2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-01-06 14:14:46 +08:00
eigen/unsupported/Eigen/MatrixFunctions

396 lines
14 KiB
Plaintext

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIX_FUNCTIONS
#define EIGEN_MATRIX_FUNCTIONS
#include <cfloat>
#include <list>
#include <functional>
#include <iterator>
#include <Eigen/Core>
#include <Eigen/LU>
#include <Eigen/Eigenvalues>
/** \ingroup Unsupported_modules
* \defgroup MatrixFunctions_Module Matrix functions module
* \brief This module aims to provide various methods for the computation of
* matrix functions.
*
* To use this module, add
* \code
* #include <unsupported/Eigen/MatrixFunctions>
* \endcode
* at the start of your source file.
*
* This module defines the following MatrixBase methods.
* - \ref matrixbase_cos "MatrixBase::cos()", for computing the matrix cosine
* - \ref matrixbase_cosh "MatrixBase::cosh()", for computing the matrix hyperbolic cosine
* - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential
* - \ref matrixbase_log "MatrixBase::log()", for computing the matrix logarithm
* - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix functions
* - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine
* - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine
* - \ref matrixbase_sqrt "MatrixBase::sqrt()", for computing the matrix square root
*
* These methods are the main entry points to this module.
*
* %Matrix functions are defined as follows. Suppose that \f$ f \f$
* is an entire function (that is, a function on the complex plane
* that is everywhere complex differentiable). Then its Taylor
* series
* \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
* converges to \f$ f(x) \f$. In this case, we can define the matrix
* function by the same series:
* \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f]
*
*/
#include "src/MatrixFunctions/MatrixExponential.h"
#include "src/MatrixFunctions/MatrixFunction.h"
#include "src/MatrixFunctions/MatrixSquareRoot.h"
#include "src/MatrixFunctions/MatrixLogarithm.h"
/**
\page matrixbaseextra MatrixBase methods defined in the MatrixFunctions module
\ingroup MatrixFunctions_Module
The remainder of the page documents the following MatrixBase methods
which are defined in the MatrixFunctions module.
\section matrixbase_cos MatrixBase::cos()
Compute the matrix cosine.
\code
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
\endcode
\param[in] M a square matrix.
\returns expression representing \f$ \cos(M) \f$.
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
\sa \ref matrixbase_sin "sin()" for an example.
\section matrixbase_cosh MatrixBase::cosh()
Compute the matrix hyberbolic cosine.
\code
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
\endcode
\param[in] M a square matrix.
\returns expression representing \f$ \cosh(M) \f$
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cosh().
\sa \ref matrixbase_sinh "sinh()" for an example.
\section matrixbase_exp MatrixBase::exp()
Compute the matrix exponential.
\code
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
\endcode
\param[in] M matrix whose exponential is to be computed.
\returns expression representing the matrix exponential of \p M.
The matrix exponential of \f$ M \f$ is defined by
\f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
The matrix exponential can be used to solve linear ordinary
differential equations: the solution of \f$ y' = My \f$ with the
initial condition \f$ y(0) = y_0 \f$ is given by
\f$ y(t) = \exp(M) y_0 \f$.
The cost of the computation is approximately \f$ 20 n^3 \f$ for
matrices of size \f$ n \f$. The number 20 depends weakly on the
norm of the matrix.
The matrix exponential is computed using the scaling-and-squaring
method combined with Pad&eacute; approximation. The matrix is first
rescaled, then the exponential of the reduced matrix is computed
approximant, and then the rescaling is undone by repeated
squaring. The degree of the Pad&eacute; approximant is chosen such
that the approximation error is less than the round-off
error. However, errors may accumulate during the squaring phase.
Details of the algorithm can be found in: Nicholas J. Higham, "The
scaling and squaring method for the matrix exponential revisited,"
<em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179&ndash;1193,
2005.
Example: The following program checks that
\f[ \exp \left[ \begin{array}{ccc}
0 & \frac14\pi & 0 \\
-\frac14\pi & 0 & 0 \\
0 & 0 & 0
\end{array} \right] = \left[ \begin{array}{ccc}
\frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
\frac12\sqrt2 & \frac12\sqrt2 & 0 \\
0 & 0 & 1
\end{array} \right]. \f]
This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
the z-axis.
\include MatrixExponential.cpp
Output: \verbinclude MatrixExponential.out
\note \p M has to be a matrix of \c float, \c double, \c long double
\c complex<float>, \c complex<double>, or \c complex<long double> .
\section matrixbase_log MatrixBase::log()
Compute the matrix logarithm.
\code
const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
\endcode
\param[in] M invertible matrix whose logarithm is to be computed.
\returns expression representing the matrix logarithm root of \p M.
The matrix logarithm of \f$ M \f$ is a matrix \f$ X \f$ such that
\f$ \exp(X) = M \f$ where exp denotes the matrix exponential. As for
the scalar logarithm, the equation \f$ \exp(X) = M \f$ may have
multiple solutions; this function returns a matrix whose eigenvalues
have imaginary part in the interval \f$ (-\pi,\pi] \f$.
In the real case, the matrix \f$ M \f$ should be invertible and
it should have no eigenvalues which are real and negative (pairs of
complex conjugate eigenvalues are allowed). In the complex case, it
only needs to be invertible.
This function computes the matrix logarithm using the Schur-Parlett
algorithm as implemented by MatrixBase::matrixFunction(). The
logarithm of an atomic block is computed by MatrixLogarithmAtomic,
which uses direct computation for 1-by-1 and 2-by-2 blocks and an
inverse scaling-and-squaring algorithm for bigger blocks, with the
square roots computed by MatrixBase::sqrt().
Details of the algorithm can be found in Section 11.6.2 of:
Nicholas J. Higham,
<em>Functions of Matrices: Theory and Computation</em>,
SIAM 2008. ISBN 978-0-898716-46-7.
Example: The following program checks that
\f[ \log \left[ \begin{array}{ccc}
\frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
\frac12\sqrt2 & \frac12\sqrt2 & 0 \\
0 & 0 & 1
\end{array} \right] = \left[ \begin{array}{ccc}
0 & \frac14\pi & 0 \\
-\frac14\pi & 0 & 0 \\
0 & 0 & 0
\end{array} \right]. \f]
This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
the z-axis. This is the inverse of the example used in the
documentation of \ref matrixbase_exp "exp()".
\include MatrixLogarithm.cpp
Output: \verbinclude MatrixLogarithm.out
\note \p M has to be a matrix of \c float, \c double, \c long double
\c complex<float>, \c complex<double>, or \c complex<long double> .
\sa MatrixBase::exp(), MatrixBase::matrixFunction(),
class MatrixLogarithmAtomic, MatrixBase::sqrt().
\section matrixbase_matrixfunction MatrixBase::matrixFunction()
Compute a matrix function.
\code
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
\endcode
\param[in] M argument of matrix function, should be a square matrix.
\param[in] f an entire function; \c f(x,n) should compute the n-th
derivative of f at x.
\returns expression representing \p f applied to \p M.
Suppose that \p M is a matrix whose entries have type \c Scalar.
Then, the second argument, \p f, should be a function with prototype
\code
ComplexScalar f(ComplexScalar, int)
\endcode
where \c ComplexScalar = \c std::complex<Scalar> if \c Scalar is
real (e.g., \c float or \c double) and \c ComplexScalar =
\c Scalar if \c Scalar is complex. The return value of \c f(x,n)
should be \f$ f^{(n)}(x) \f$, the n-th derivative of f at x.
This routine uses the algorithm described in:
Philip Davies and Nicholas J. Higham,
"A Schur-Parlett algorithm for computing matrix functions",
<em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464&ndash;485, 2003.
The actual work is done by the MatrixFunction class.
Example: The following program checks that
\f[ \exp \left[ \begin{array}{ccc}
0 & \frac14\pi & 0 \\
-\frac14\pi & 0 & 0 \\
0 & 0 & 0
\end{array} \right] = \left[ \begin{array}{ccc}
\frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
\frac12\sqrt2 & \frac12\sqrt2 & 0 \\
0 & 0 & 1
\end{array} \right]. \f]
This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
the z-axis. This is the same example as used in the documentation
of \ref matrixbase_exp "exp()".
\include MatrixFunction.cpp
Output: \verbinclude MatrixFunction.out
Note that the function \c expfn is defined for complex numbers
\c x, even though the matrix \c A is over the reals. Instead of
\c expfn, we could also have used StdStemFunctions::exp:
\code
A.matrixFunction(StdStemFunctions<std::complex<double> >::exp, &B);
\endcode
\section matrixbase_sin MatrixBase::sin()
Compute the matrix sine.
\code
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
\endcode
\param[in] M a square matrix.
\returns expression representing \f$ \sin(M) \f$.
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
Example: \include MatrixSine.cpp
Output: \verbinclude MatrixSine.out
\section matrixbase_sinh MatrixBase::sinh()
Compute the matrix hyperbolic sine.
\code
MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
\endcode
\param[in] M a square matrix.
\returns expression representing \f$ \sinh(M) \f$
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sinh().
Example: \include MatrixSinh.cpp
Output: \verbinclude MatrixSinh.out
\section matrixbase_sqrt MatrixBase::sqrt()
Compute the matrix square root.
\code
const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
\endcode
\param[in] M invertible matrix whose square root is to be computed.
\returns expression representing the matrix square root of \p M.
The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$
whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then
\f$ S^2 = M \f$.
In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and
it should have no eigenvalues which are real and negative (pairs of
complex conjugate eigenvalues are allowed). In that case, the matrix
has a square root which is also real, and this is the square root
computed by this function.
The matrix square root is computed by first reducing the matrix to
quasi-triangular form with the real Schur decomposition. The square
root of the quasi-triangular matrix can then be computed directly. The
cost is approximately \f$ 25 n^3 \f$ real flops for the real Schur
decomposition and \f$ 3\frac13 n^3 \f$ real flops for the remainder
(though the computation time in practice is likely more than this
indicates).
Details of the algorithm can be found in: Nicholas J. Highan,
"Computing real square roots of a real matrix", <em>Linear Algebra
Appl.</em>, 88/89:405&ndash;430, 1987.
If the matrix is <b>positive-definite symmetric</b>, then the square
root is also positive-definite symmetric. In this case, it is best to
use SelfAdjointEigenSolver::operatorSqrt() to compute it.
In the <b>complex case</b>, the matrix \f$ M \f$ should be invertible;
this is a restriction of the algorithm. The square root computed by
this algorithm is the one whose eigenvalues have an argument in the
interval \f$ (-\frac12\pi, \frac12\pi] \f$. This is the usual branch
cut.
The computation is the same as in the real case, except that the
complex Schur decomposition is used to reduce the matrix to a
triangular matrix. The theoretical cost is the same. Details are in:
&Aring;ke Bj&ouml;rck and Sven Hammarling, "A Schur method for the
square root of a matrix", <em>Linear Algebra Appl.</em>,
52/53:127&ndash;140, 1983.
Example: The following program checks that the square root of
\f[ \left[ \begin{array}{cc}
\cos(\frac13\pi) & -\sin(\frac13\pi) \\
\sin(\frac13\pi) & \cos(\frac13\pi)
\end{array} \right], \f]
corresponding to a rotation over 60 degrees, is a rotation over 30 degrees:
\f[ \left[ \begin{array}{cc}
\cos(\frac16\pi) & -\sin(\frac16\pi) \\
\sin(\frac16\pi) & \cos(\frac16\pi)
\end{array} \right]. \f]
\include MatrixSquareRoot.cpp
Output: \verbinclude MatrixSquareRoot.out
\sa class RealSchur, class ComplexSchur, class MatrixSquareRoot,
SelfAdjointEigenSolver::operatorSqrt().
*/
#endif // EIGEN_MATRIX_FUNCTIONS