mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
85 lines
2.9 KiB
C++
85 lines
2.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/QR>
|
|
|
|
template<typename MatrixType> void qr(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
QR.h
|
|
*/
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
|
|
|
MatrixType a = MatrixType::Random(rows,cols);
|
|
QR<MatrixType> qrOfA(a);
|
|
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
|
|
VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());
|
|
|
|
#if 0 // eigenvalues module not yet ready
|
|
SquareMatrixType b = a.adjoint() * a;
|
|
|
|
// check tridiagonalization
|
|
Tridiagonalization<SquareMatrixType> tridiag(b);
|
|
VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
|
|
|
|
// check hessenberg decomposition
|
|
HessenbergDecomposition<SquareMatrixType> hess(b);
|
|
VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
|
VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
|
|
b = SquareMatrixType::Random(cols,cols);
|
|
hess.compute(b);
|
|
VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
|
#endif
|
|
}
|
|
|
|
void test_eigen2_qr()
|
|
{
|
|
for(int i = 0; i < 1; i++) {
|
|
CALL_SUBTEST_1( qr(Matrix2f()) );
|
|
CALL_SUBTEST_2( qr(Matrix4d()) );
|
|
CALL_SUBTEST_3( qr(MatrixXf(12,8)) );
|
|
CALL_SUBTEST_4( qr(MatrixXcd(5,5)) );
|
|
CALL_SUBTEST_4( qr(MatrixXcd(7,3)) );
|
|
}
|
|
|
|
#ifdef EIGEN_TEST_PART_5
|
|
// small isFullRank test
|
|
{
|
|
Matrix3d mat;
|
|
mat << 1, 45, 1, 2, 2, 2, 1, 2, 3;
|
|
VERIFY(mat.qr().isFullRank());
|
|
mat << 1, 1, 1, 2, 2, 2, 1, 2, 3;
|
|
//always returns true in eigen2support
|
|
//VERIFY(!mat.qr().isFullRank());
|
|
}
|
|
|
|
#endif
|
|
}
|