mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
5d63d2cc4b
* add real/imag/abs2 global functions for Array * document ei_global_math_functions_filtering_base * improve unit tests
205 lines
7.6 KiB
C++
205 lines
7.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename ArrayType> void array(const ArrayType& m)
|
|
{
|
|
typedef typename ArrayType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
|
|
typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
ArrayType m1 = ArrayType::Random(rows, cols),
|
|
m2 = ArrayType::Random(rows, cols),
|
|
m3(rows, cols);
|
|
|
|
ColVectorType cv1 = ColVectorType::Random(rows);
|
|
RowVectorType rv1 = RowVectorType::Random(cols);
|
|
|
|
Scalar s1 = ei_random<Scalar>(),
|
|
s2 = ei_random<Scalar>();
|
|
|
|
// scalar addition
|
|
VERIFY_IS_APPROX(m1 + s1, s1 + m1);
|
|
VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
|
|
VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
|
|
VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
|
|
VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
|
|
VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
|
|
m3 = m1;
|
|
m3 += s2;
|
|
VERIFY_IS_APPROX(m3, m1 + s2);
|
|
m3 = m1;
|
|
m3 -= s1;
|
|
VERIFY_IS_APPROX(m3, m1 - s1);
|
|
|
|
// reductions
|
|
VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum());
|
|
VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum());
|
|
if (!ei_isApprox(m1.sum(), (m1+m2).sum()))
|
|
VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
|
|
VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(ei_scalar_sum_op<Scalar>()));
|
|
|
|
// vector-wise ops
|
|
m3 = m1;
|
|
VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
|
|
m3 = m1;
|
|
VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
|
|
m3 = m1;
|
|
VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
|
|
m3 = m1;
|
|
VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
|
|
}
|
|
|
|
template<typename ArrayType> void comparisons(const ArrayType& m)
|
|
{
|
|
typedef typename ArrayType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
int r = ei_random<int>(0, rows-1),
|
|
c = ei_random<int>(0, cols-1);
|
|
|
|
ArrayType m1 = ArrayType::Random(rows, cols),
|
|
m2 = ArrayType::Random(rows, cols),
|
|
m3(rows, cols);
|
|
|
|
VERIFY(((m1 + Scalar(1)) > m1).all());
|
|
VERIFY(((m1 - Scalar(1)) < m1).all());
|
|
if (rows*cols>1)
|
|
{
|
|
m3 = m1;
|
|
m3(r,c) += 1;
|
|
VERIFY(! (m1 < m3).all() );
|
|
VERIFY(! (m1 > m3).all() );
|
|
}
|
|
|
|
// comparisons to scalar
|
|
VERIFY( (m1 != (m1(r,c)+1) ).any() );
|
|
VERIFY( (m1 > (m1(r,c)-1) ).any() );
|
|
VERIFY( (m1 < (m1(r,c)+1) ).any() );
|
|
VERIFY( (m1 == m1(r,c) ).any() );
|
|
|
|
// test Select
|
|
VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
|
|
VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
|
|
Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
|
|
for (int j=0; j<cols; ++j)
|
|
for (int i=0; i<rows; ++i)
|
|
m3(i,j) = ei_abs(m1(i,j))<mid ? 0 : m1(i,j);
|
|
VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
|
|
.select(ArrayType::Zero(rows,cols),m1), m3);
|
|
// shorter versions:
|
|
VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
|
|
.select(0,m1), m3);
|
|
VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
|
|
.select(m1,0), m3);
|
|
// even shorter version:
|
|
VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
|
|
|
|
// count
|
|
VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
|
|
// TODO allows colwise/rowwise for array
|
|
VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayXi::Constant(cols,rows).transpose());
|
|
VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayXi::Constant(rows, cols));
|
|
}
|
|
|
|
template<typename ArrayType> void array_real(const ArrayType& m)
|
|
{
|
|
typedef typename ArrayType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
ArrayType m1 = ArrayType::Random(rows, cols),
|
|
m2 = ArrayType::Random(rows, cols),
|
|
m3(rows, cols);
|
|
|
|
VERIFY_IS_APPROX(m1.sin(), std::sin(m1));
|
|
VERIFY_IS_APPROX(m1.sin(), ei_sin(m1));
|
|
VERIFY_IS_APPROX(m1.cos(), std::cos(m1));
|
|
VERIFY_IS_APPROX(m1.cos(), ei_cos(m1));
|
|
|
|
VERIFY_IS_APPROX(ei_cos(m1+RealScalar(3)*m2), ei_cos((m1+RealScalar(3)*m2).eval()));
|
|
VERIFY_IS_APPROX(std::cos(m1+RealScalar(3)*m2), std::cos((m1+RealScalar(3)*m2).eval()));
|
|
|
|
VERIFY_IS_APPROX(m1.abs().sqrt(), std::sqrt(std::abs(m1)));
|
|
VERIFY_IS_APPROX(m1.abs().sqrt(), ei_sqrt(ei_abs(m1)));
|
|
VERIFY_IS_APPROX(m1.abs(), ei_sqrt(ei_abs2(m1)));
|
|
|
|
VERIFY_IS_APPROX(ei_abs2(ei_real(m1)) + ei_abs2(ei_imag(m1)), ei_abs2(m1));
|
|
VERIFY_IS_APPROX(ei_abs2(std::real(m1)) + ei_abs2(std::imag(m1)), ei_abs2(m1));
|
|
if(!NumTraits<Scalar>::IsComplex)
|
|
VERIFY_IS_APPROX(ei_real(m1), m1);
|
|
|
|
VERIFY_IS_APPROX(m1.abs().log(), std::log(std::abs(m1)));
|
|
VERIFY_IS_APPROX(m1.abs().log(), ei_log(ei_abs(m1)));
|
|
|
|
VERIFY_IS_APPROX(m1.exp(), std::exp(m1));
|
|
VERIFY_IS_APPROX(m1.exp() * m2.exp(), std::exp(m1+m2));
|
|
VERIFY_IS_APPROX(m1.exp(), ei_exp(m1));
|
|
VERIFY_IS_APPROX(m1.exp() / m2.exp(), std::exp(m1-m2));
|
|
}
|
|
|
|
void test_array()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( array(Array22f()) );
|
|
CALL_SUBTEST_3( array(Array44d()) );
|
|
CALL_SUBTEST_4( array(ArrayXXcf(3, 3)) );
|
|
CALL_SUBTEST_5( array(ArrayXXf(8, 12)) );
|
|
CALL_SUBTEST_6( array(ArrayXXi(8, 12)) );
|
|
}
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( comparisons(Array22f()) );
|
|
CALL_SUBTEST_3( comparisons(Array44d()) );
|
|
CALL_SUBTEST_5( comparisons(ArrayXXf(8, 12)) );
|
|
CALL_SUBTEST_6( comparisons(ArrayXXi(8, 12)) );
|
|
}
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( array_real(Array22f()) );
|
|
CALL_SUBTEST_3( array_real(Array44d()) );
|
|
CALL_SUBTEST_5( array_real(ArrayXXf(8, 12)) );
|
|
}
|
|
|
|
VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<int>::type, int >::ret));
|
|
VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<float>::type, float >::ret));
|
|
VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::ret));
|
|
typedef CwiseUnaryOp<ei_scalar_sum_op<double>, ArrayXd > Xpr;
|
|
VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<Xpr>::type,
|
|
ArrayBase<Xpr>
|
|
>::ret));
|
|
}
|