mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
00f32752f7
* Unifying all loadLocalTile from lhs and rhs to an extract_block function. * Adding get_tensor operation which was missing in TensorContractionMapper. * Adding the -D method missing from cmake for Disable_Skinny Contraction operation. * Wrapping all the indices in TensorScanSycl into Scan parameter struct. * Fixing typo in Device SYCL * Unifying load to private register for tall/skinny no shared * Unifying load to vector tile for tensor-vector/vector-tensor operation * Removing all the LHS/RHS class for extracting data from global * Removing Outputfunction from TensorContractionSkinnyNoshared. * Combining the local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining General Tensor-Vector and VectorTensor contraction into one kernel. * Making double buffering optional for Tensor contraction when local memory is version is used. * Modifying benchmark to accept custom Reduction Sizes * Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host * Adding Test for SYCL * Modifying SYCL CMake
106 lines
3.8 KiB
C++
106 lines
3.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::array;
|
|
using Eigen::SyclDevice;
|
|
using Eigen::Tensor;
|
|
using Eigen::TensorMap;
|
|
|
|
using Eigen::Tensor;
|
|
using Eigen::RowMajor;
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_tanh_sycl(const Eigen::SyclDevice &sycl_device)
|
|
{
|
|
|
|
IndexType sizeDim1 = 4;
|
|
IndexType sizeDim2 = 4;
|
|
IndexType sizeDim3 = 1;
|
|
array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
|
Tensor<DataType, 3, DataLayout, IndexType> in(tensorRange);
|
|
Tensor<DataType, 3, DataLayout, IndexType> out(tensorRange);
|
|
Tensor<DataType, 3, DataLayout, IndexType> out_cpu(tensorRange);
|
|
|
|
in = in.random();
|
|
|
|
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(in.size()*sizeof(DataType)));
|
|
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
|
|
|
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
|
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data1, in.data(),(in.size())*sizeof(DataType));
|
|
gpu2.device(sycl_device) = gpu1.tanh();
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_data2,(out.size())*sizeof(DataType));
|
|
|
|
out_cpu=in.tanh();
|
|
|
|
for (int i = 0; i < in.size(); ++i) {
|
|
VERIFY_IS_APPROX(out(i), out_cpu(i));
|
|
}
|
|
}
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
static void test_sigmoid_sycl(const Eigen::SyclDevice &sycl_device)
|
|
{
|
|
|
|
IndexType sizeDim1 = 4;
|
|
IndexType sizeDim2 = 4;
|
|
IndexType sizeDim3 = 1;
|
|
array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
|
Tensor<DataType, 3, DataLayout, IndexType> in(tensorRange);
|
|
Tensor<DataType, 3, DataLayout, IndexType> out(tensorRange);
|
|
Tensor<DataType, 3, DataLayout, IndexType> out_cpu(tensorRange);
|
|
|
|
in = in.random();
|
|
|
|
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(in.size()*sizeof(DataType)));
|
|
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
|
|
|
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
|
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_data1, in.data(),(in.size())*sizeof(DataType));
|
|
gpu2.device(sycl_device) = gpu1.sigmoid();
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_data2,(out.size())*sizeof(DataType));
|
|
|
|
out_cpu=in.sigmoid();
|
|
|
|
for (int i = 0; i < in.size(); ++i) {
|
|
VERIFY_IS_APPROX(out(i), out_cpu(i));
|
|
}
|
|
}
|
|
|
|
|
|
template<typename DataType, typename dev_Selector> void sycl_computing_test_per_device(dev_Selector s){
|
|
QueueInterface queueInterface(s);
|
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
|
test_tanh_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_tanh_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
|
test_sigmoid_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_sigmoid_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_math_sycl) {
|
|
for (const auto& device :Eigen::get_sycl_supported_devices()) {
|
|
CALL_SUBTEST(sycl_computing_test_per_device<float>(device));
|
|
}
|
|
}
|