eigen/unsupported/test/FFTW.cpp
Mark Borgerding cd7912313d changed FFT function vector and Matrix args to pointer as Benoit suggested
implemented 2D Complex FFT for FFTW impl
2010-01-22 00:35:03 -05:00

186 lines
7.3 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <fftw3.h>
#include <unsupported/Eigen/FFT>
template <typename T>
std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
using namespace std;
using namespace Eigen;
float norm(float x) {return x*x;}
double norm(double x) {return x*x;}
long double norm(long double x) {return x*x;}
template < typename T>
complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
complex<long double> promote(float x) { return complex<long double>( x); }
complex<long double> promote(double x) { return complex<long double>( x); }
complex<long double> promote(long double x) { return complex<long double>( x); }
template <typename T1,typename T2>
long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
{
long double totalpower=0;
long double difpower=0;
long double pi = acos((long double)-1 );
cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
for (size_t k0=0;k0<fftbuf.size();++k0) {
complex<long double> acc = 0;
long double phinc = -2.*k0* pi / timebuf.size();
for (size_t k1=0;k1<timebuf.size();++k1) {
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
}
totalpower += norm(acc);
complex<long double> x = promote(fftbuf[k0]);
complex<long double> dif = acc - x;
difpower += norm(dif);
cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
}
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
return sqrt(difpower/totalpower);
}
template <typename T1,typename T2>
long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
{
long double totalpower=0;
long double difpower=0;
size_t n = min( buf1.size(),buf2.size() );
for (size_t k=0;k<n;++k) {
totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
difpower += norm(buf1[k] - buf2[k]);
}
return sqrt(difpower/totalpower);
}
template <class T>
void test_scalar(int nfft)
{
typedef typename Eigen::FFT<T>::Complex Complex;
typedef typename Eigen::FFT<T>::Scalar Scalar;
FFT<T> fft;
vector<Scalar> inbuf(nfft);
vector<Complex> outbuf;
for (int k=0;k<nfft;++k)
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
fft.fwd( &outbuf,inbuf);
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
vector<Scalar> buf3;
fft.inv( &buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
}
template <class T>
void test_complex(int nfft)
{
typedef typename Eigen::FFT<T>::Complex Complex;
FFT<T> fft;
vector<Complex> inbuf(nfft);
vector<Complex> outbuf;
vector<Complex> buf3;
for (int k=0;k<nfft;++k)
inbuf[k]= RandomCpx<T>();
fft.fwd( &outbuf , inbuf);
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
fft.inv( &buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
}
template <typename T,int nrows,int ncols>
void test_complex2d()
{
typedef typename Eigen::FFT<T>::Complex Complex;
FFT<T> fft;
Eigen::Matrix<Complex,nrows,ncols> src;
Eigen::Matrix<Complex,nrows,ncols> dst;
Eigen::Matrix<Complex,nrows,ncols> src2;
Eigen::Matrix<Complex,nrows,ncols> dst2;
//src = Eigen::Matrix<Complex,nrows,ncols>::Random();
src = Eigen::Matrix<Complex,nrows,ncols>::Identity();
for (int k=0;k<ncols;k++) {
Eigen::Matrix<Complex,nrows,1> tmpIn = src.col(k);
Eigen::Matrix<Complex,nrows,1> tmpOut;
fft.fwd( &tmpOut,tmpIn );
dst2.col(k) = tmpOut;
}
//cout << "dst2: " << dst2 << "\n\n";
for (int k=0;k<nrows;k++) {
Eigen::Matrix<Complex,1,ncols> tmpIn = dst2.row(k);
Eigen::Matrix<Complex,1,ncols> tmpOut;
fft.fwd( &tmpOut, tmpIn);
dst2.row(k) = tmpOut;
}
/*
*/
fft.fwd2(dst.data(),src.data(),nrows,ncols);
fft.inv2(src2.data(),dst.data(),nrows,ncols);
/*
cout << "src: " << src << "\n\n";
cout << "dst: " << dst << "\n\n";
cout << "src2: " << src2 << "\n\n";
cout << "dst2: " << dst2 << "\n\n";
*/
VERIFY( (src-src2).norm() < test_precision<T>() );
VERIFY( (dst-dst2).norm() < test_precision<T>() );
}
void test_FFTW()
{
CALL_SUBTEST( ( test_complex2d<float,4,8> () ) );
CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
//CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) );
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) );
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) );
CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) );
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
}