mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
152 lines
5.5 KiB
C++
152 lines
5.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
|
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
|
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
|
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/
|
|
|
|
// discard stack allocation as that too bypasses malloc
|
|
#define EIGEN_STACK_ALLOCATION_LIMIT 0
|
|
#define EIGEN_RUNTIME_NO_MALLOC
|
|
|
|
#include "main.h"
|
|
#include <Eigen/SVD>
|
|
#include <iostream>
|
|
#include <Eigen/LU>
|
|
|
|
|
|
#define SVD_DEFAULT(M) BDCSVD<M>
|
|
#define SVD_FOR_MIN_NORM(M) BDCSVD<M>
|
|
#include "svd_common.h"
|
|
|
|
// Check all variants of JacobiSVD
|
|
template<typename MatrixType>
|
|
void bdcsvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
|
|
{
|
|
MatrixType m;
|
|
if(pickrandom) {
|
|
m.resizeLike(a);
|
|
svd_fill_random(m);
|
|
}
|
|
else
|
|
m = a;
|
|
|
|
CALL_SUBTEST(( svd_test_all_computation_options<BDCSVD<MatrixType> >(m, false) ));
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void bdcsvd_method()
|
|
{
|
|
enum { Size = MatrixType::RowsAtCompileTime };
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef Matrix<RealScalar, Size, 1> RealVecType;
|
|
MatrixType m = MatrixType::Identity();
|
|
VERIFY_IS_APPROX(m.bdcSvd().singularValues(), RealVecType::Ones());
|
|
VERIFY_RAISES_ASSERT(m.bdcSvd().matrixU());
|
|
VERIFY_RAISES_ASSERT(m.bdcSvd().matrixV());
|
|
VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).solve(m), m);
|
|
VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).transpose().solve(m), m);
|
|
VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).adjoint().solve(m), m);
|
|
}
|
|
|
|
// Compare the Singular values returned with Jacobi and Bdc.
|
|
template<typename MatrixType>
|
|
void compare_bdc_jacobi(const MatrixType& a = MatrixType(), unsigned int computationOptions = 0, int algoswap = 16, bool random = true)
|
|
{
|
|
MatrixType m = random ? MatrixType::Random(a.rows(), a.cols()) : a;
|
|
|
|
BDCSVD<MatrixType> bdc_svd(m.rows(), m.cols(), computationOptions);
|
|
bdc_svd.setSwitchSize(algoswap);
|
|
bdc_svd.compute(m);
|
|
|
|
JacobiSVD<MatrixType> jacobi_svd(m);
|
|
VERIFY_IS_APPROX(bdc_svd.singularValues(), jacobi_svd.singularValues());
|
|
|
|
if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
|
|
if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
|
|
if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
|
|
if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
|
|
}
|
|
|
|
// Verifies total deflation is **not** triggered.
|
|
void compare_bdc_jacobi_instance(bool structure_as_m, int algoswap = 16)
|
|
{
|
|
MatrixXd m(4, 3);
|
|
if (structure_as_m) {
|
|
// The first 3 rows are the reduced form of Matrix 1 as shown below, and it
|
|
// has nonzero elements in the first column and diagonals only.
|
|
m << 1.056293, 0, 0,
|
|
-0.336468, 0.907359, 0,
|
|
-1.566245, 0, 0.149150,
|
|
-0.1, 0, 0;
|
|
} else {
|
|
// Matrix 1.
|
|
m << 0.882336, 18.3914, -26.7921,
|
|
-5.58135, 17.1931, -24.0892,
|
|
-20.794, 8.68496, -4.83103,
|
|
-8.4981, -10.5451, 23.9072;
|
|
}
|
|
compare_bdc_jacobi(m, 0, algoswap, false);
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(bdcsvd)
|
|
{
|
|
CALL_SUBTEST_3(( svd_verify_assert<BDCSVD<Matrix3f> >(Matrix3f()) ));
|
|
CALL_SUBTEST_4(( svd_verify_assert<BDCSVD<Matrix4d> >(Matrix4d()) ));
|
|
CALL_SUBTEST_7(( svd_verify_assert<BDCSVD<MatrixXf> >(MatrixXf(10,12)) ));
|
|
CALL_SUBTEST_8(( svd_verify_assert<BDCSVD<MatrixXcd> >(MatrixXcd(7,5)) ));
|
|
|
|
CALL_SUBTEST_101(( svd_all_trivial_2x2(bdcsvd<Matrix2cd>) ));
|
|
CALL_SUBTEST_102(( svd_all_trivial_2x2(bdcsvd<Matrix2d>) ));
|
|
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_3(( bdcsvd<Matrix3f>() ));
|
|
CALL_SUBTEST_4(( bdcsvd<Matrix4d>() ));
|
|
CALL_SUBTEST_5(( bdcsvd<Matrix<float,3,5> >() ));
|
|
|
|
int r = internal::random<int>(1, EIGEN_TEST_MAX_SIZE/2),
|
|
c = internal::random<int>(1, EIGEN_TEST_MAX_SIZE/2);
|
|
|
|
TEST_SET_BUT_UNUSED_VARIABLE(r)
|
|
TEST_SET_BUT_UNUSED_VARIABLE(c)
|
|
|
|
CALL_SUBTEST_6(( bdcsvd(Matrix<double,Dynamic,2>(r,2)) ));
|
|
CALL_SUBTEST_7(( bdcsvd(MatrixXf(r,c)) ));
|
|
CALL_SUBTEST_7(( compare_bdc_jacobi(MatrixXf(r,c)) ));
|
|
CALL_SUBTEST_10(( bdcsvd(MatrixXd(r,c)) ));
|
|
CALL_SUBTEST_10(( compare_bdc_jacobi(MatrixXd(r,c)) ));
|
|
CALL_SUBTEST_8(( bdcsvd(MatrixXcd(r,c)) ));
|
|
CALL_SUBTEST_8(( compare_bdc_jacobi(MatrixXcd(r,c)) ));
|
|
|
|
// Test on inf/nan matrix
|
|
CALL_SUBTEST_7( (svd_inf_nan<BDCSVD<MatrixXf>, MatrixXf>()) );
|
|
CALL_SUBTEST_10( (svd_inf_nan<BDCSVD<MatrixXd>, MatrixXd>()) );
|
|
}
|
|
|
|
// test matrixbase method
|
|
CALL_SUBTEST_1(( bdcsvd_method<Matrix2cd>() ));
|
|
CALL_SUBTEST_3(( bdcsvd_method<Matrix3f>() ));
|
|
|
|
// Test problem size constructors
|
|
CALL_SUBTEST_7( BDCSVD<MatrixXf>(10,10) );
|
|
|
|
// Check that preallocation avoids subsequent mallocs
|
|
// Disabled because not supported by BDCSVD
|
|
// CALL_SUBTEST_9( svd_preallocate<void>() );
|
|
|
|
CALL_SUBTEST_2( svd_underoverflow<void>() );
|
|
|
|
// Without total deflation issues.
|
|
CALL_SUBTEST_11(( compare_bdc_jacobi_instance(true) ));
|
|
CALL_SUBTEST_12(( compare_bdc_jacobi_instance(false) ));
|
|
|
|
// With total deflation issues before, when it shouldn't be triggered.
|
|
CALL_SUBTEST_13(( compare_bdc_jacobi_instance(true, 3) ));
|
|
CALL_SUBTEST_14(( compare_bdc_jacobi_instance(false, 3) ));
|
|
}
|