mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
2ac0b78739
The previous implementation caused a buffer overflow trying to calculate non- zero counts for columns that no longer exist.
761 lines
29 KiB
C++
761 lines
29 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
|
|
// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
|
|
static long g_realloc_count = 0;
|
|
#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
|
|
|
|
static long g_dense_op_sparse_count = 0;
|
|
#define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++;
|
|
#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10;
|
|
#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20;
|
|
#endif
|
|
|
|
#include "sparse.h"
|
|
|
|
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
|
|
{
|
|
typedef typename SparseMatrixType::StorageIndex StorageIndex;
|
|
typedef Matrix<StorageIndex,2,1> Vector2;
|
|
|
|
const Index rows = ref.rows();
|
|
const Index cols = ref.cols();
|
|
//const Index inner = ref.innerSize();
|
|
//const Index outer = ref.outerSize();
|
|
|
|
typedef typename SparseMatrixType::Scalar Scalar;
|
|
typedef typename SparseMatrixType::RealScalar RealScalar;
|
|
enum { Flags = SparseMatrixType::Flags };
|
|
|
|
double density = (std::max)(8./(rows*cols), 0.01);
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
|
Scalar eps = 1e-6;
|
|
|
|
Scalar s1 = internal::random<Scalar>();
|
|
{
|
|
SparseMatrixType m(rows, cols);
|
|
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
|
|
DenseVector vec1 = DenseVector::Random(rows);
|
|
|
|
std::vector<Vector2> zeroCoords;
|
|
std::vector<Vector2> nonzeroCoords;
|
|
initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
|
|
|
|
// test coeff and coeffRef
|
|
for (std::size_t i=0; i<zeroCoords.size(); ++i)
|
|
{
|
|
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
|
|
if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
|
|
VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
|
|
}
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
|
|
if(!nonzeroCoords.empty()) {
|
|
m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
|
refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
|
}
|
|
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
|
|
// test assertion
|
|
VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
|
|
VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
|
|
}
|
|
|
|
// test insert (inner random)
|
|
{
|
|
DenseMatrix m1(rows,cols);
|
|
m1.setZero();
|
|
SparseMatrixType m2(rows,cols);
|
|
bool call_reserve = internal::random<int>()%2;
|
|
Index nnz = internal::random<int>(1,int(rows)/2);
|
|
if(call_reserve)
|
|
{
|
|
if(internal::random<int>()%2)
|
|
m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
|
|
else
|
|
m2.reserve(m2.outerSize() * nnz);
|
|
}
|
|
g_realloc_count = 0;
|
|
for (Index j=0; j<cols; ++j)
|
|
{
|
|
for (Index k=0; k<nnz; ++k)
|
|
{
|
|
Index i = internal::random<Index>(0,rows-1);
|
|
if (m1.coeff(i,j)==Scalar(0))
|
|
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
|
|
}
|
|
}
|
|
|
|
if(call_reserve && !SparseMatrixType::IsRowMajor)
|
|
{
|
|
VERIFY(g_realloc_count==0);
|
|
}
|
|
|
|
m2.finalize();
|
|
VERIFY_IS_APPROX(m2,m1);
|
|
}
|
|
|
|
// test insert (fully random)
|
|
{
|
|
DenseMatrix m1(rows,cols);
|
|
m1.setZero();
|
|
SparseMatrixType m2(rows,cols);
|
|
if(internal::random<int>()%2)
|
|
m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
|
|
for (int k=0; k<rows*cols; ++k)
|
|
{
|
|
Index i = internal::random<Index>(0,rows-1);
|
|
Index j = internal::random<Index>(0,cols-1);
|
|
if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
|
|
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
|
|
else
|
|
{
|
|
Scalar v = internal::random<Scalar>();
|
|
m2.coeffRef(i,j) += v;
|
|
m1(i,j) += v;
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(m2,m1);
|
|
}
|
|
|
|
// test insert (un-compressed)
|
|
for(int mode=0;mode<4;++mode)
|
|
{
|
|
DenseMatrix m1(rows,cols);
|
|
m1.setZero();
|
|
SparseMatrixType m2(rows,cols);
|
|
VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
|
|
m2.reserve(r);
|
|
for (Index k=0; k<rows*cols; ++k)
|
|
{
|
|
Index i = internal::random<Index>(0,rows-1);
|
|
Index j = internal::random<Index>(0,cols-1);
|
|
if (m1.coeff(i,j)==Scalar(0))
|
|
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
|
|
if(mode==3)
|
|
m2.reserve(r);
|
|
}
|
|
if(internal::random<int>()%2)
|
|
m2.makeCompressed();
|
|
VERIFY_IS_APPROX(m2,m1);
|
|
}
|
|
|
|
// test basic computations
|
|
{
|
|
DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
|
|
DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
|
|
DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
|
|
DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
|
|
SparseMatrixType m1(rows, cols);
|
|
SparseMatrixType m2(rows, cols);
|
|
SparseMatrixType m3(rows, cols);
|
|
SparseMatrixType m4(rows, cols);
|
|
initSparse<Scalar>(density, refM1, m1);
|
|
initSparse<Scalar>(density, refM2, m2);
|
|
initSparse<Scalar>(density, refM3, m3);
|
|
initSparse<Scalar>(density, refM4, m4);
|
|
|
|
if(internal::random<bool>())
|
|
m1.makeCompressed();
|
|
|
|
Index m1_nnz = m1.nonZeros();
|
|
|
|
VERIFY_IS_APPROX(m1*s1, refM1*s1);
|
|
VERIFY_IS_APPROX(m1+m2, refM1+refM2);
|
|
VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
|
|
VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
|
|
VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
|
|
VERIFY_IS_APPROX(m4=m1/s1, refM1/s1);
|
|
VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz);
|
|
|
|
if(SparseMatrixType::IsRowMajor)
|
|
VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
|
|
else
|
|
VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
|
|
|
|
DenseVector rv = DenseVector::Random(m1.cols());
|
|
DenseVector cv = DenseVector::Random(m1.rows());
|
|
Index r = internal::random<Index>(0,m1.rows()-2);
|
|
Index c = internal::random<Index>(0,m1.cols()-1);
|
|
VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
|
|
VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
|
|
VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
|
|
|
|
VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
|
|
VERIFY_IS_APPROX(m1.real(), refM1.real());
|
|
|
|
refM4.setRandom();
|
|
// sparse cwise* dense
|
|
VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
|
|
// dense cwise* sparse
|
|
VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
|
|
// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
|
|
|
|
// mixed sparse-dense
|
|
VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3);
|
|
VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4);
|
|
VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3);
|
|
VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4);
|
|
VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
|
|
VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
|
|
VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3));
|
|
|
|
VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
|
|
VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
|
|
VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
|
|
VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3));
|
|
VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
|
|
VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
|
|
|
|
|
|
VERIFY_IS_APPROX(m1.sum(), refM1.sum());
|
|
|
|
m4 = m1; refM4 = m4;
|
|
|
|
VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
|
|
VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
|
|
VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
|
|
VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
|
|
|
|
VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
|
|
VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
|
|
|
|
refM3 = refM1;
|
|
|
|
VERIFY_IS_APPROX(refM1+=m2, refM3+=refM2);
|
|
VERIFY_IS_APPROX(refM1-=m2, refM3-=refM2);
|
|
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2+refM4, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,10);
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2+refM4, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2+refM4, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4+m2, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4+m2, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4+m2, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
|
|
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2-refM4, refM3 =refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,20);
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2-refM4, refM3+=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2-refM4, refM3-=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4-m2, refM3 =refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4-m2, refM3+=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
|
|
g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4-m2, refM3-=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
|
|
refM3 = m3;
|
|
|
|
if (rows>=2 && cols>=2)
|
|
{
|
|
VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) );
|
|
VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) );
|
|
VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) );
|
|
VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) );
|
|
}
|
|
m1 = m4; refM1 = refM4;
|
|
|
|
// test aliasing
|
|
VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
|
|
VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
|
|
m1 = m4; refM1 = refM4;
|
|
VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
|
|
VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
|
|
m1 = m4; refM1 = refM4;
|
|
VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
|
|
VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
|
|
m1 = m4; refM1 = refM4;
|
|
VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
|
|
VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
|
|
m1 = m4; refM1 = refM4;
|
|
|
|
if(m1.isCompressed())
|
|
{
|
|
VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum());
|
|
m1.coeffs() += s1;
|
|
for(Index j = 0; j<m1.outerSize(); ++j)
|
|
for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it)
|
|
refM1(it.row(), it.col()) += s1;
|
|
VERIFY_IS_APPROX(m1, refM1);
|
|
}
|
|
|
|
// and/or
|
|
{
|
|
typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool;
|
|
SpBool mb1 = m1.real().template cast<bool>();
|
|
SpBool mb2 = m2.real().template cast<bool>();
|
|
VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
|
|
VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
|
|
VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
|
|
SpBool mb3 = mb1 && mb2;
|
|
if(mb1.coeffs().all() && mb2.coeffs().all())
|
|
{
|
|
VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
|
|
}
|
|
}
|
|
}
|
|
|
|
// test reverse iterators
|
|
{
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
|
|
SparseMatrixType m2(rows, cols);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
std::vector<Scalar> ref_value(m2.innerSize());
|
|
std::vector<Index> ref_index(m2.innerSize());
|
|
if(internal::random<bool>())
|
|
m2.makeCompressed();
|
|
for(Index j = 0; j<m2.outerSize(); ++j)
|
|
{
|
|
Index count_forward = 0;
|
|
|
|
for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it)
|
|
{
|
|
ref_value[ref_value.size()-1-count_forward] = it.value();
|
|
ref_index[ref_index.size()-1-count_forward] = it.index();
|
|
count_forward++;
|
|
}
|
|
Index count_reverse = 0;
|
|
for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it)
|
|
{
|
|
VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1);
|
|
VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
|
|
count_reverse++;
|
|
}
|
|
VERIFY_IS_EQUAL(count_forward, count_reverse);
|
|
}
|
|
}
|
|
|
|
// test transpose
|
|
{
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
|
|
SparseMatrixType m2(rows, cols);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
|
|
VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
|
|
|
|
VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
|
|
|
|
// check isApprox handles opposite storage order
|
|
typename Transpose<SparseMatrixType>::PlainObject m3(m2);
|
|
VERIFY(m2.isApprox(m3));
|
|
}
|
|
|
|
// test prune
|
|
{
|
|
SparseMatrixType m2(rows, cols);
|
|
DenseMatrix refM2(rows, cols);
|
|
refM2.setZero();
|
|
int countFalseNonZero = 0;
|
|
int countTrueNonZero = 0;
|
|
m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
|
|
for (Index j=0; j<m2.cols(); ++j)
|
|
{
|
|
for (Index i=0; i<m2.rows(); ++i)
|
|
{
|
|
float x = internal::random<float>(0,1);
|
|
if (x<0.1f)
|
|
{
|
|
// do nothing
|
|
}
|
|
else if (x<0.5f)
|
|
{
|
|
countFalseNonZero++;
|
|
m2.insert(i,j) = Scalar(0);
|
|
}
|
|
else
|
|
{
|
|
countTrueNonZero++;
|
|
m2.insert(i,j) = Scalar(1);
|
|
refM2(i,j) = Scalar(1);
|
|
}
|
|
}
|
|
}
|
|
if(internal::random<bool>())
|
|
m2.makeCompressed();
|
|
VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
|
|
if(countTrueNonZero>0)
|
|
VERIFY_IS_APPROX(m2, refM2);
|
|
m2.prune(Scalar(1));
|
|
VERIFY(countTrueNonZero==m2.nonZeros());
|
|
VERIFY_IS_APPROX(m2, refM2);
|
|
}
|
|
|
|
// test setFromTriplets
|
|
{
|
|
typedef Triplet<Scalar,StorageIndex> TripletType;
|
|
std::vector<TripletType> triplets;
|
|
Index ntriplets = rows*cols;
|
|
triplets.reserve(ntriplets);
|
|
DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols);
|
|
DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
|
|
DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
|
|
|
|
for(Index i=0;i<ntriplets;++i)
|
|
{
|
|
StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
|
|
StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
|
|
Scalar v = internal::random<Scalar>();
|
|
triplets.push_back(TripletType(r,c,v));
|
|
refMat_sum(r,c) += v;
|
|
if(std::abs(refMat_prod(r,c))==0)
|
|
refMat_prod(r,c) = v;
|
|
else
|
|
refMat_prod(r,c) *= v;
|
|
refMat_last(r,c) = v;
|
|
}
|
|
SparseMatrixType m(rows,cols);
|
|
m.setFromTriplets(triplets.begin(), triplets.end());
|
|
VERIFY_IS_APPROX(m, refMat_sum);
|
|
|
|
m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
|
|
VERIFY_IS_APPROX(m, refMat_prod);
|
|
#if (defined(__cplusplus) && __cplusplus >= 201103L)
|
|
m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
|
|
VERIFY_IS_APPROX(m, refMat_last);
|
|
#endif
|
|
}
|
|
|
|
// test Map
|
|
{
|
|
DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
|
|
SparseMatrixType m2(rows, cols), m3(rows, cols);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
initSparse<Scalar>(density, refMat3, m3);
|
|
{
|
|
Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
|
|
Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
|
|
VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
|
|
VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
|
|
}
|
|
{
|
|
MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
|
|
MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
|
|
VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
|
|
VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
|
|
}
|
|
|
|
Index i = internal::random<Index>(0,rows-1);
|
|
Index j = internal::random<Index>(0,cols-1);
|
|
m2.coeffRef(i,j) = 123;
|
|
if(internal::random<bool>())
|
|
m2.makeCompressed();
|
|
Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
|
|
VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123));
|
|
VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123));
|
|
mapMat2.coeffRef(i,j) = -123;
|
|
VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123));
|
|
}
|
|
|
|
// test triangularView
|
|
{
|
|
DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
|
|
SparseMatrixType m2(rows, cols), m3(rows, cols);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
refMat3 = refMat2.template triangularView<Lower>();
|
|
m3 = m2.template triangularView<Lower>();
|
|
VERIFY_IS_APPROX(m3, refMat3);
|
|
|
|
refMat3 = refMat2.template triangularView<Upper>();
|
|
m3 = m2.template triangularView<Upper>();
|
|
VERIFY_IS_APPROX(m3, refMat3);
|
|
|
|
{
|
|
refMat3 = refMat2.template triangularView<UnitUpper>();
|
|
m3 = m2.template triangularView<UnitUpper>();
|
|
VERIFY_IS_APPROX(m3, refMat3);
|
|
|
|
refMat3 = refMat2.template triangularView<UnitLower>();
|
|
m3 = m2.template triangularView<UnitLower>();
|
|
VERIFY_IS_APPROX(m3, refMat3);
|
|
}
|
|
|
|
refMat3 = refMat2.template triangularView<StrictlyUpper>();
|
|
m3 = m2.template triangularView<StrictlyUpper>();
|
|
VERIFY_IS_APPROX(m3, refMat3);
|
|
|
|
refMat3 = refMat2.template triangularView<StrictlyLower>();
|
|
m3 = m2.template triangularView<StrictlyLower>();
|
|
VERIFY_IS_APPROX(m3, refMat3);
|
|
|
|
// check sparse-triangular to dense
|
|
refMat3 = m2.template triangularView<StrictlyUpper>();
|
|
VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
|
|
}
|
|
|
|
// test selfadjointView
|
|
if(!SparseMatrixType::IsRowMajor)
|
|
{
|
|
DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
|
|
SparseMatrixType m2(rows, rows), m3(rows, rows);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
refMat3 = refMat2.template selfadjointView<Lower>();
|
|
m3 = m2.template selfadjointView<Lower>();
|
|
VERIFY_IS_APPROX(m3, refMat3);
|
|
|
|
refMat3 += refMat2.template selfadjointView<Lower>();
|
|
m3 += m2.template selfadjointView<Lower>();
|
|
VERIFY_IS_APPROX(m3, refMat3);
|
|
|
|
refMat3 -= refMat2.template selfadjointView<Lower>();
|
|
m3 -= m2.template selfadjointView<Lower>();
|
|
VERIFY_IS_APPROX(m3, refMat3);
|
|
|
|
// selfadjointView only works for square matrices:
|
|
SparseMatrixType m4(rows, rows+1);
|
|
VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
|
|
VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
|
|
}
|
|
|
|
// test sparseView
|
|
{
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
|
SparseMatrixType m2(rows, rows);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
|
|
|
|
// sparse view on expressions:
|
|
VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval());
|
|
VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval());
|
|
VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval());
|
|
VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval());
|
|
}
|
|
|
|
// test diagonal
|
|
{
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
|
|
SparseMatrixType m2(rows, cols);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
|
|
DenseVector d = m2.diagonal();
|
|
VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
|
|
d = m2.diagonal().array();
|
|
VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
|
|
VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
|
|
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
|
|
m2.diagonal() += refMat2.diagonal();
|
|
refMat2.diagonal() += refMat2.diagonal();
|
|
VERIFY_IS_APPROX(m2, refMat2);
|
|
}
|
|
|
|
// test diagonal to sparse
|
|
{
|
|
DenseVector d = DenseVector::Random(rows);
|
|
DenseMatrix refMat2 = d.asDiagonal();
|
|
SparseMatrixType m2;
|
|
m2 = d.asDiagonal();
|
|
VERIFY_IS_APPROX(m2, refMat2);
|
|
SparseMatrixType m3(d.asDiagonal());
|
|
VERIFY_IS_APPROX(m3, refMat2);
|
|
refMat2 += d.asDiagonal();
|
|
m2 += d.asDiagonal();
|
|
VERIFY_IS_APPROX(m2, refMat2);
|
|
m2.setZero(); m2 += d.asDiagonal();
|
|
refMat2.setZero(); refMat2 += d.asDiagonal();
|
|
VERIFY_IS_APPROX(m2, refMat2);
|
|
m2.setZero(); m2 -= d.asDiagonal();
|
|
refMat2.setZero(); refMat2 -= d.asDiagonal();
|
|
VERIFY_IS_APPROX(m2, refMat2);
|
|
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
m2.makeCompressed();
|
|
m2 += d.asDiagonal();
|
|
refMat2 += d.asDiagonal();
|
|
VERIFY_IS_APPROX(m2, refMat2);
|
|
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
m2.makeCompressed();
|
|
VectorXi res(rows);
|
|
for(Index i=0; i<rows; ++i)
|
|
res(i) = internal::random<int>(0,3);
|
|
m2.reserve(res);
|
|
m2 -= d.asDiagonal();
|
|
refMat2 -= d.asDiagonal();
|
|
VERIFY_IS_APPROX(m2, refMat2);
|
|
}
|
|
|
|
// test conservative resize
|
|
{
|
|
std::vector< std::pair<StorageIndex,StorageIndex> > inc;
|
|
if(rows > 3 && cols > 2)
|
|
inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
|
|
inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
|
|
inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
|
|
inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
|
|
inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
|
|
inc.push_back(std::pair<StorageIndex,StorageIndex>(0,-1));
|
|
inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,0));
|
|
inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,-1));
|
|
|
|
for(size_t i = 0; i< inc.size(); i++) {
|
|
StorageIndex incRows = inc[i].first;
|
|
StorageIndex incCols = inc[i].second;
|
|
SparseMatrixType m1(rows, cols);
|
|
DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
|
|
initSparse<Scalar>(density, refMat1, m1);
|
|
|
|
SparseMatrixType m2 = m1;
|
|
m2.makeCompressed();
|
|
|
|
m1.conservativeResize(rows+incRows, cols+incCols);
|
|
m2.conservativeResize(rows+incRows, cols+incCols);
|
|
refMat1.conservativeResize(rows+incRows, cols+incCols);
|
|
if (incRows > 0) refMat1.bottomRows(incRows).setZero();
|
|
if (incCols > 0) refMat1.rightCols(incCols).setZero();
|
|
|
|
VERIFY_IS_APPROX(m1, refMat1);
|
|
VERIFY_IS_APPROX(m2, refMat1);
|
|
|
|
// Insert new values
|
|
if (incRows > 0)
|
|
m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
|
|
if (incCols > 0)
|
|
m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
|
|
|
|
VERIFY_IS_APPROX(m1, refMat1);
|
|
|
|
|
|
}
|
|
}
|
|
|
|
// test Identity matrix
|
|
{
|
|
DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
|
|
SparseMatrixType m1(rows, rows);
|
|
m1.setIdentity();
|
|
VERIFY_IS_APPROX(m1, refMat1);
|
|
for(int k=0; k<rows*rows/4; ++k)
|
|
{
|
|
Index i = internal::random<Index>(0,rows-1);
|
|
Index j = internal::random<Index>(0,rows-1);
|
|
Scalar v = internal::random<Scalar>();
|
|
m1.coeffRef(i,j) = v;
|
|
refMat1.coeffRef(i,j) = v;
|
|
VERIFY_IS_APPROX(m1, refMat1);
|
|
if(internal::random<Index>(0,10)<2)
|
|
m1.makeCompressed();
|
|
}
|
|
m1.setIdentity();
|
|
refMat1.setIdentity();
|
|
VERIFY_IS_APPROX(m1, refMat1);
|
|
}
|
|
|
|
// test array/vector of InnerIterator
|
|
{
|
|
typedef typename SparseMatrixType::InnerIterator IteratorType;
|
|
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
|
|
SparseMatrixType m2(rows, cols);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
IteratorType static_array[2];
|
|
static_array[0] = IteratorType(m2,0);
|
|
static_array[1] = IteratorType(m2,m2.outerSize()-1);
|
|
VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
|
|
VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
|
|
if(static_array[0] && static_array[1])
|
|
{
|
|
++(static_array[1]);
|
|
static_array[1] = IteratorType(m2,0);
|
|
VERIFY( static_array[1] );
|
|
VERIFY( static_array[1].index() == static_array[0].index() );
|
|
VERIFY( static_array[1].outer() == static_array[0].outer() );
|
|
VERIFY( static_array[1].value() == static_array[0].value() );
|
|
}
|
|
|
|
std::vector<IteratorType> iters(2);
|
|
iters[0] = IteratorType(m2,0);
|
|
iters[1] = IteratorType(m2,m2.outerSize()-1);
|
|
}
|
|
|
|
// test reserve with empty rows/columns
|
|
{
|
|
SparseMatrixType m1(0,cols);
|
|
m1.reserve(ArrayXi::Constant(m1.outerSize(),1));
|
|
SparseMatrixType m2(rows,0);
|
|
m2.reserve(ArrayXi::Constant(m2.outerSize(),1));
|
|
}
|
|
}
|
|
|
|
|
|
template<typename SparseMatrixType>
|
|
void big_sparse_triplet(Index rows, Index cols, double density) {
|
|
typedef typename SparseMatrixType::StorageIndex StorageIndex;
|
|
typedef typename SparseMatrixType::Scalar Scalar;
|
|
typedef Triplet<Scalar,Index> TripletType;
|
|
std::vector<TripletType> triplets;
|
|
double nelements = density * rows*cols;
|
|
VERIFY(nelements>=0 && nelements < NumTraits<StorageIndex>::highest());
|
|
Index ntriplets = Index(nelements);
|
|
triplets.reserve(ntriplets);
|
|
Scalar sum = Scalar(0);
|
|
for(Index i=0;i<ntriplets;++i)
|
|
{
|
|
Index r = internal::random<Index>(0,rows-1);
|
|
Index c = internal::random<Index>(0,cols-1);
|
|
// use positive values to prevent numerical cancellation errors in sum
|
|
Scalar v = numext::abs(internal::random<Scalar>());
|
|
triplets.push_back(TripletType(r,c,v));
|
|
sum += v;
|
|
}
|
|
SparseMatrixType m(rows,cols);
|
|
m.setFromTriplets(triplets.begin(), triplets.end());
|
|
VERIFY(m.nonZeros() <= ntriplets);
|
|
VERIFY_IS_APPROX(sum, m.sum());
|
|
}
|
|
|
|
template<int>
|
|
void bug1105()
|
|
{
|
|
// Regression test for bug 1105
|
|
int n = Eigen::internal::random<int>(200,600);
|
|
SparseMatrix<std::complex<double>,0, long> mat(n, n);
|
|
std::complex<double> val;
|
|
|
|
for(int i=0; i<n; ++i)
|
|
{
|
|
mat.coeffRef(i, i%(n/10)) = val;
|
|
VERIFY(mat.data().allocatedSize()<20*n);
|
|
}
|
|
}
|
|
|
|
#ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
|
|
|
|
EIGEN_DECLARE_TEST(sparse_basic)
|
|
{
|
|
g_dense_op_sparse_count = 0; // Suppresses compiler warning.
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
|
|
if(Eigen::internal::random<int>(0,4) == 0) {
|
|
r = c; // check square matrices in 25% of tries
|
|
}
|
|
EIGEN_UNUSED_VARIABLE(r+c);
|
|
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
|
|
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
|
|
CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
|
|
CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
|
|
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
|
|
CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
|
|
CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
|
|
|
|
r = Eigen::internal::random<int>(1,100);
|
|
c = Eigen::internal::random<int>(1,100);
|
|
if(Eigen::internal::random<int>(0,4) == 0) {
|
|
r = c; // check square matrices in 25% of tries
|
|
}
|
|
|
|
CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
|
|
CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
|
|
}
|
|
|
|
// Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
|
|
CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
|
|
CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
|
|
|
|
CALL_SUBTEST_7( bug1105<0>() );
|
|
}
|
|
#endif
|