mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
187 lines
8.5 KiB
C++
187 lines
8.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define TEST_ENABLE_TEMPORARY_TRACKING
|
|
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
|
|
// ^^ see bug 1449
|
|
|
|
#include "main.h"
|
|
|
|
template <typename MatrixType>
|
|
void matrixRedux(const MatrixType& m) {
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols);
|
|
|
|
// The entries of m1 are uniformly distributed in [-1,1), so m1.prod() is very small. This may lead to test
|
|
// failures if we underflow into denormals. Thus, we scale so that entries are close to 1.
|
|
MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1;
|
|
|
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m2(rows, rows);
|
|
m2.setRandom();
|
|
// Prevent overflows for integer types.
|
|
if (Eigen::NumTraits<Scalar>::IsInteger) {
|
|
Scalar kMaxVal = Scalar(10000);
|
|
m1.array() = m1.array() - kMaxVal * (m1.array() / kMaxVal);
|
|
m2.array() = m2.array() - kMaxVal * (m2.array() / kMaxVal);
|
|
}
|
|
|
|
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
|
|
VERIFY_IS_APPROX(
|
|
MatrixType::Ones(rows, cols).sum(),
|
|
Scalar(float(
|
|
rows *
|
|
cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
|
|
Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0)));
|
|
for (int j = 0; j < cols; j++)
|
|
for (int i = 0; i < rows; i++) {
|
|
s += m1(i, j);
|
|
p *= m1_for_prod(i, j);
|
|
minc = (std::min)(numext::real(minc), numext::real(m1(i, j)));
|
|
maxc = (std::max)(numext::real(maxc), numext::real(m1(i, j)));
|
|
}
|
|
const Scalar mean = s / Scalar(RealScalar(rows * cols));
|
|
|
|
VERIFY_IS_APPROX(m1.sum(), s);
|
|
VERIFY_IS_APPROX(m1.mean(), mean);
|
|
VERIFY_IS_APPROX(m1_for_prod.prod(), p);
|
|
VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc));
|
|
VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc));
|
|
|
|
// test that partial reduction works if nested expressions is forced to evaluate early
|
|
VERIFY_IS_APPROX((m1.matrix() * m1.matrix().transpose()).cwiseProduct(m2.matrix()).rowwise().sum().sum(),
|
|
(m1.matrix() * m1.matrix().transpose()).eval().cwiseProduct(m2.matrix()).rowwise().sum().sum());
|
|
|
|
// test slice vectorization assuming assign is ok
|
|
Index r0 = internal::random<Index>(0, rows - 1);
|
|
Index c0 = internal::random<Index>(0, cols - 1);
|
|
Index r1 = internal::random<Index>(r0 + 1, rows) - r0;
|
|
Index c1 = internal::random<Index>(c0 + 1, cols) - c0;
|
|
VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).sum(), m1.block(r0, c0, r1, c1).eval().sum());
|
|
VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).mean(), m1.block(r0, c0, r1, c1).eval().mean());
|
|
VERIFY_IS_APPROX(m1_for_prod.block(r0, c0, r1, c1).prod(), m1_for_prod.block(r0, c0, r1, c1).eval().prod());
|
|
VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).real().minCoeff(), m1.block(r0, c0, r1, c1).real().eval().minCoeff());
|
|
VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).real().maxCoeff(), m1.block(r0, c0, r1, c1).real().eval().maxCoeff());
|
|
|
|
// regression for bug 1090
|
|
const int R1 = MatrixType::RowsAtCompileTime >= 2 ? MatrixType::RowsAtCompileTime / 2 : 6;
|
|
const int C1 = MatrixType::ColsAtCompileTime >= 2 ? MatrixType::ColsAtCompileTime / 2 : 6;
|
|
if (R1 <= rows - r0 && C1 <= cols - c0) {
|
|
VERIFY_IS_APPROX((m1.template block<R1, C1>(r0, c0).sum()), m1.block(r0, c0, R1, C1).sum());
|
|
}
|
|
|
|
// test empty objects
|
|
VERIFY_IS_APPROX(m1.block(r0, c0, 0, 0).sum(), Scalar(0));
|
|
VERIFY_IS_APPROX(m1.block(r0, c0, 0, 0).prod(), Scalar(1));
|
|
|
|
// test nesting complex expression
|
|
VERIFY_EVALUATION_COUNT((m1.matrix() * m1.matrix().transpose()).sum(),
|
|
(MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime != 1 ? 0 : 1));
|
|
VERIFY_EVALUATION_COUNT(((m1.matrix() * m1.matrix().transpose()) + m2).sum(),
|
|
(MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime != 1 ? 0 : 1));
|
|
}
|
|
|
|
template <typename VectorType>
|
|
void vectorRedux(const VectorType& w) {
|
|
using std::abs;
|
|
typedef typename VectorType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
Index size = w.size();
|
|
|
|
VectorType v = VectorType::Random(size);
|
|
VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod
|
|
|
|
for (int i = 1; i < size; i++) {
|
|
Scalar s(0), p(1);
|
|
RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0)));
|
|
for (int j = 0; j < i; j++) {
|
|
s += v[j];
|
|
p *= v_for_prod[j];
|
|
minc = (std::min)(minc, numext::real(v[j]));
|
|
maxc = (std::max)(maxc, numext::real(v[j]));
|
|
}
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1));
|
|
VERIFY_IS_APPROX(p, v_for_prod.head(i).prod());
|
|
VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
|
|
VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
|
|
}
|
|
|
|
for (int i = 0; i < size - 1; i++) {
|
|
Scalar s(0), p(1);
|
|
RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
|
|
for (int j = i; j < size; j++) {
|
|
s += v[j];
|
|
p *= v_for_prod[j];
|
|
minc = (std::min)(minc, numext::real(v[j]));
|
|
maxc = (std::max)(maxc, numext::real(v[j]));
|
|
}
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size - i).sum()), Scalar(1));
|
|
VERIFY_IS_APPROX(p, v_for_prod.tail(size - i).prod());
|
|
VERIFY_IS_APPROX(minc, v.real().tail(size - i).minCoeff());
|
|
VERIFY_IS_APPROX(maxc, v.real().tail(size - i).maxCoeff());
|
|
}
|
|
|
|
for (int i = 0; i < size / 2; i++) {
|
|
Scalar s(0), p(1);
|
|
RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
|
|
for (int j = i; j < size - i; j++) {
|
|
s += v[j];
|
|
p *= v_for_prod[j];
|
|
minc = (std::min)(minc, numext::real(v[j]));
|
|
maxc = (std::max)(maxc, numext::real(v[j]));
|
|
}
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size - 2 * i).sum()), Scalar(1));
|
|
VERIFY_IS_APPROX(p, v_for_prod.segment(i, size - 2 * i).prod());
|
|
VERIFY_IS_APPROX(minc, v.real().segment(i, size - 2 * i).minCoeff());
|
|
VERIFY_IS_APPROX(maxc, v.real().segment(i, size - 2 * i).maxCoeff());
|
|
}
|
|
|
|
// test empty objects
|
|
VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0));
|
|
VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1));
|
|
VERIFY_RAISES_ASSERT(v.head(0).mean());
|
|
VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
|
|
VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(redux) {
|
|
// the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
|
|
int maxsize = (std::min)(100, EIGEN_TEST_MAX_SIZE);
|
|
TEST_SET_BUT_UNUSED_VARIABLE(maxsize);
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(matrixRedux(Matrix<float, 1, 1>()));
|
|
CALL_SUBTEST_1(matrixRedux(Array<float, 1, 1>()));
|
|
CALL_SUBTEST_2(matrixRedux(Matrix2f()));
|
|
CALL_SUBTEST_2(matrixRedux(Array2f()));
|
|
CALL_SUBTEST_2(matrixRedux(Array22f()));
|
|
CALL_SUBTEST_3(matrixRedux(Matrix4d()));
|
|
CALL_SUBTEST_3(matrixRedux(Array4d()));
|
|
CALL_SUBTEST_3(matrixRedux(Array44d()));
|
|
CALL_SUBTEST_4(matrixRedux(MatrixXcf(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize))));
|
|
CALL_SUBTEST_4(matrixRedux(ArrayXXcf(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize))));
|
|
CALL_SUBTEST_5(matrixRedux(MatrixXd(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize))));
|
|
CALL_SUBTEST_5(matrixRedux(ArrayXXd(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize))));
|
|
CALL_SUBTEST_6(matrixRedux(MatrixXi(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize))));
|
|
CALL_SUBTEST_6(matrixRedux(ArrayXXi(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize))));
|
|
}
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_7(vectorRedux(Vector4f()));
|
|
CALL_SUBTEST_7(vectorRedux(Array4f()));
|
|
CALL_SUBTEST_5(vectorRedux(VectorXd(internal::random<int>(1, maxsize))));
|
|
CALL_SUBTEST_5(vectorRedux(ArrayXd(internal::random<int>(1, maxsize))));
|
|
CALL_SUBTEST_8(vectorRedux(VectorXf(internal::random<int>(1, maxsize))));
|
|
CALL_SUBTEST_8(vectorRedux(ArrayXf(internal::random<int>(1, maxsize))));
|
|
}
|
|
}
|