eigen/test/permutationmatrices.cpp

186 lines
7.0 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define TEST_ENABLE_TEMPORARY_TRACKING
#include "main.h"
using namespace std;
template <typename MatrixType>
void permutationmatrices(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime, Options = MatrixType::Options };
typedef PermutationMatrix<Rows> LeftPermutationType;
typedef Transpositions<Rows> LeftTranspositionsType;
typedef Matrix<int, Rows, 1> LeftPermutationVectorType;
typedef Map<LeftPermutationType> MapLeftPerm;
typedef PermutationMatrix<Cols> RightPermutationType;
typedef Transpositions<Cols> RightTranspositionsType;
typedef Matrix<int, Cols, 1> RightPermutationVectorType;
typedef Map<RightPermutationType> MapRightPerm;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m_original = MatrixType::Random(rows, cols);
LeftPermutationVectorType lv;
randomPermutationVector(lv, rows);
LeftPermutationType lp(lv);
RightPermutationVectorType rv;
randomPermutationVector(rv, cols);
RightPermutationType rp(rv);
LeftTranspositionsType lt(lv);
RightTranspositionsType rt(rv);
MatrixType m_permuted = MatrixType::Random(rows, cols);
VERIFY_EVALUATION_COUNT(m_permuted = lp * m_original * rp, 1); // 1 temp for sub expression "lp * m_original"
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++) VERIFY_IS_APPROX(m_permuted(lv(i), j), m_original(i, rv(j)));
Matrix<Scalar, Rows, Rows> lm(lp);
Matrix<Scalar, Cols, Cols> rm(rp);
VERIFY_IS_APPROX(m_permuted, lm * m_original * rm);
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted = lp * m_permuted * rp, 1);
VERIFY_IS_APPROX(m_permuted, lm * m_original * rm);
LeftPermutationType lpi;
lpi = lp.inverse();
VERIFY_IS_APPROX(lpi * m_permuted, lp.inverse() * m_permuted);
VERIFY_IS_APPROX(lp.inverse() * m_permuted * rp.inverse(), m_original);
VERIFY_IS_APPROX(lv.asPermutation().inverse() * m_permuted * rv.asPermutation().inverse(), m_original);
VERIFY_IS_APPROX(
MapLeftPerm(lv.data(), lv.size()).inverse() * m_permuted * MapRightPerm(rv.data(), rv.size()).inverse(),
m_original);
VERIFY((lp * lp.inverse()).toDenseMatrix().isIdentity());
VERIFY((lv.asPermutation() * lv.asPermutation().inverse()).toDenseMatrix().isIdentity());
VERIFY(
(MapLeftPerm(lv.data(), lv.size()) * MapLeftPerm(lv.data(), lv.size()).inverse()).toDenseMatrix().isIdentity());
LeftPermutationVectorType lv2;
randomPermutationVector(lv2, rows);
LeftPermutationType lp2(lv2);
Matrix<Scalar, Rows, Rows> lm2(lp2);
VERIFY_IS_APPROX((lp * lp2).toDenseMatrix().template cast<Scalar>(), lm * lm2);
VERIFY_IS_APPROX((lv.asPermutation() * lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm * lm2);
VERIFY_IS_APPROX(
(MapLeftPerm(lv.data(), lv.size()) * MapLeftPerm(lv2.data(), lv2.size())).toDenseMatrix().template cast<Scalar>(),
lm * lm2);
LeftPermutationType identityp;
identityp.setIdentity(rows);
VERIFY_IS_APPROX(m_original, identityp * m_original);
// check inplace permutations
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted.noalias() = lp.inverse() * m_permuted, 1); // 1 temp to allocate the mask
VERIFY_IS_APPROX(m_permuted, lp.inverse() * m_original);
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp.inverse(), 1); // 1 temp to allocate the mask
VERIFY_IS_APPROX(m_permuted, m_original * rp.inverse());
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted.noalias() = lp * m_permuted, 1); // 1 temp to allocate the mask
VERIFY_IS_APPROX(m_permuted, lp * m_original);
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp, 1); // 1 temp to allocate the mask
VERIFY_IS_APPROX(m_permuted, m_original * rp);
if (rows > 1 && cols > 1) {
lp2 = lp;
Index i = internal::random<Index>(0, rows - 1);
Index j;
do j = internal::random<Index>(0, rows - 1);
while (j == i);
lp2.applyTranspositionOnTheLeft(i, j);
lm = lp;
lm.row(i).swap(lm.row(j));
VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>());
RightPermutationType rp2 = rp;
i = internal::random<Index>(0, cols - 1);
do j = internal::random<Index>(0, cols - 1);
while (j == i);
rp2.applyTranspositionOnTheRight(i, j);
rm = rp;
rm.col(i).swap(rm.col(j));
VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>());
}
{
// simple compilation check
Matrix<Scalar, Cols, Cols> A = rp;
Matrix<Scalar, Cols, Cols> B = rp.transpose();
VERIFY_IS_APPROX(A, B.transpose());
}
m_permuted = m_original;
lp = lt;
rp = rt;
VERIFY_EVALUATION_COUNT(m_permuted = lt * m_permuted * rt, 1);
VERIFY_IS_APPROX(m_permuted, lp * m_original * rp.transpose());
VERIFY_IS_APPROX(lt.inverse() * m_permuted * rt.inverse(), m_original);
// Check inplace transpositions
m_permuted = m_original;
VERIFY_IS_APPROX(m_permuted = lt * m_permuted, lp * m_original);
m_permuted = m_original;
VERIFY_IS_APPROX(m_permuted = lt.inverse() * m_permuted, lp.inverse() * m_original);
m_permuted = m_original;
VERIFY_IS_APPROX(m_permuted = m_permuted * rt, m_original * rt);
m_permuted = m_original;
VERIFY_IS_APPROX(m_permuted = m_permuted * rt.inverse(), m_original * rt.inverse());
}
template <typename T>
void bug890() {
typedef Matrix<T, Dynamic, Dynamic> MatrixType;
typedef Matrix<T, Dynamic, 1> VectorType;
typedef Stride<Dynamic, Dynamic> S;
typedef Map<MatrixType, Aligned, S> MapType;
typedef PermutationMatrix<Dynamic> Perm;
VectorType v1(2), v2(2), op(4), rhs(2);
v1 << 666, 667;
op << 1, 0, 0, 1;
rhs << 42, 42;
Perm P(2);
P.indices() << 1, 0;
MapType(v1.data(), 2, 1, S(1, 1)) = P * MapType(rhs.data(), 2, 1, S(1, 1));
VERIFY_IS_APPROX(v1, (P * rhs).eval());
MapType(v1.data(), 2, 1, S(1, 1)) = P.inverse() * MapType(rhs.data(), 2, 1, S(1, 1));
VERIFY_IS_APPROX(v1, (P.inverse() * rhs).eval());
}
EIGEN_DECLARE_TEST(permutationmatrices) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(permutationmatrices(Matrix<float, 1, 1>()));
CALL_SUBTEST_2(permutationmatrices(Matrix3f()));
CALL_SUBTEST_3(permutationmatrices(Matrix<double, 3, 3, RowMajor>()));
CALL_SUBTEST_4(permutationmatrices(Matrix4d()));
CALL_SUBTEST_5(permutationmatrices(Matrix<double, 40, 60>()));
CALL_SUBTEST_6(permutationmatrices(Matrix<double, Dynamic, Dynamic, RowMajor>(
internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_7(permutationmatrices(
MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
}
CALL_SUBTEST_5(bug890<double>());
}