mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
102 lines
4.3 KiB
C++
102 lines
4.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
|
|
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define TEST_ENABLE_TEMPORARY_TRACKING
|
|
|
|
#include "main.h"
|
|
|
|
template <int N, typename XprType>
|
|
void use_n_times(const XprType& xpr) {
|
|
typename internal::nested_eval<XprType, N>::type mat(xpr);
|
|
typename XprType::PlainObject res(mat.rows(), mat.cols());
|
|
nb_temporaries--; // remove res
|
|
res.setZero();
|
|
for (int i = 0; i < N; ++i) res += mat;
|
|
}
|
|
|
|
template <int N, typename ReferenceType, typename XprType>
|
|
bool verify_eval_type(const XprType&, const ReferenceType&) {
|
|
typedef typename internal::nested_eval<XprType, N>::type EvalType;
|
|
return internal::is_same<internal::remove_all_t<EvalType>, internal::remove_all_t<ReferenceType>>::value;
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void run_nesting_ops_1(const MatrixType& _m) {
|
|
typename internal::nested_eval<MatrixType, 2>::type m(_m);
|
|
|
|
// Make really sure that we are in debug mode!
|
|
VERIFY_RAISES_ASSERT(eigen_assert(false));
|
|
|
|
// The only intention of these tests is to ensure that this code does
|
|
// not trigger any asserts or segmentation faults... more to come.
|
|
VERIFY_IS_APPROX((m.transpose() * m).diagonal().sum(), (m.transpose() * m).diagonal().sum());
|
|
VERIFY_IS_APPROX((m.transpose() * m).diagonal().array().abs().sum(),
|
|
(m.transpose() * m).diagonal().array().abs().sum());
|
|
|
|
VERIFY_IS_APPROX((m.transpose() * m).array().abs().sum(), (m.transpose() * m).array().abs().sum());
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void run_nesting_ops_2(const MatrixType& _m) {
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
Index rows = _m.rows();
|
|
Index cols = _m.cols();
|
|
MatrixType m1 = MatrixType::Random(rows, cols);
|
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, ColMajor> m2;
|
|
|
|
if ((MatrixType::SizeAtCompileTime == Dynamic)) {
|
|
VERIFY_EVALUATION_COUNT(use_n_times<1>(m1 + m1 * m1), 1);
|
|
VERIFY_EVALUATION_COUNT(use_n_times<10>(m1 + m1 * m1), 1);
|
|
|
|
VERIFY_EVALUATION_COUNT(use_n_times<1>(m1.template triangularView<Lower>().solve(m1.col(0))), 1);
|
|
VERIFY_EVALUATION_COUNT(use_n_times<10>(m1.template triangularView<Lower>().solve(m1.col(0))), 1);
|
|
|
|
VERIFY_EVALUATION_COUNT(use_n_times<1>(Scalar(2) * m1.template triangularView<Lower>().solve(m1.col(0))),
|
|
2); // FIXME could be one by applying the scaling in-place on the solve result
|
|
VERIFY_EVALUATION_COUNT(use_n_times<1>(m1.col(0) + m1.template triangularView<Lower>().solve(m1.col(0))),
|
|
2); // FIXME could be one by adding m1.col() inplace
|
|
VERIFY_EVALUATION_COUNT(use_n_times<10>(m1.col(0) + m1.template triangularView<Lower>().solve(m1.col(0))), 2);
|
|
}
|
|
|
|
{
|
|
VERIFY(verify_eval_type<10>(m1, m1));
|
|
if (!NumTraits<Scalar>::IsComplex) {
|
|
VERIFY(verify_eval_type<3>(2 * m1, 2 * m1));
|
|
VERIFY(verify_eval_type<4>(2 * m1, m1));
|
|
} else {
|
|
VERIFY(verify_eval_type<2>(2 * m1, 2 * m1));
|
|
VERIFY(verify_eval_type<3>(2 * m1, m1));
|
|
}
|
|
VERIFY(verify_eval_type<2>(m1 + m1, m1 + m1));
|
|
VERIFY(verify_eval_type<3>(m1 + m1, m1));
|
|
VERIFY(verify_eval_type<1>(m1 * m1.transpose(), m2));
|
|
VERIFY(verify_eval_type<1>(m1 * (m1 + m1).transpose(), m2));
|
|
VERIFY(verify_eval_type<2>(m1 * m1.transpose(), m2));
|
|
VERIFY(verify_eval_type<1>(m1 + m1 * m1, m1));
|
|
|
|
VERIFY(verify_eval_type<1>(m1.template triangularView<Lower>().solve(m1), m1));
|
|
VERIFY(verify_eval_type<1>(m1 + m1.template triangularView<Lower>().solve(m1), m1));
|
|
}
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(nesting_ops) {
|
|
CALL_SUBTEST_1(run_nesting_ops_1(MatrixXf::Random(25, 25)));
|
|
CALL_SUBTEST_2(run_nesting_ops_1(MatrixXcd::Random(25, 25)));
|
|
CALL_SUBTEST_3(run_nesting_ops_1(Matrix4f::Random()));
|
|
CALL_SUBTEST_4(run_nesting_ops_1(Matrix2d::Random()));
|
|
|
|
Index s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE);
|
|
CALL_SUBTEST_1(run_nesting_ops_2(MatrixXf(s, s)));
|
|
CALL_SUBTEST_2(run_nesting_ops_2(MatrixXcd(s, s)));
|
|
CALL_SUBTEST_3(run_nesting_ops_2(Matrix4f()));
|
|
CALL_SUBTEST_4(run_nesting_ops_2(Matrix2d()));
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
|
}
|