eigen/test/householder.cpp

236 lines
9.8 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/QR>
template <typename MatrixType>
void householder(const MatrixType& m) {
static bool even = true;
even = !even;
/* this test covers the following files:
Householder.h
*/
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType;
typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType;
Matrix<Scalar, internal::max_size_prefer_dynamic(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime), 1>
_tmp((std::max)(rows, cols));
Scalar* tmp = &_tmp.coeffRef(0, 0);
Scalar beta;
RealScalar alpha;
EssentialVectorType essential;
VectorType v1 = VectorType::Random(rows), v2;
v2 = v1;
v1.makeHouseholder(essential, beta, alpha);
v1.applyHouseholderOnTheLeft(essential, beta, tmp);
VERIFY_IS_APPROX(v1.norm(), v2.norm());
if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows - 1).norm(), v1.norm());
v1 = VectorType::Random(rows);
v2 = v1;
v1.applyHouseholderOnTheLeft(essential, beta, tmp);
VERIFY_IS_APPROX(v1.norm(), v2.norm());
// reconstruct householder matrix:
SquareMatrixType id, H1, H2;
id.setIdentity(rows, rows);
H1 = H2 = id;
VectorType vv(rows);
vv << Scalar(1), essential;
H1.applyHouseholderOnTheLeft(essential, beta, tmp);
H2.applyHouseholderOnTheRight(essential, beta, tmp);
VERIFY_IS_APPROX(H1, H2);
VERIFY_IS_APPROX(H1, id - beta * vv * vv.adjoint());
MatrixType m1(rows, cols), m2(rows, cols);
v1 = VectorType::Random(rows);
if (even) v1.tail(rows - 1).setZero();
m1.colwise() = v1;
m2 = m1;
m1.col(0).makeHouseholder(essential, beta, alpha);
m1.applyHouseholderOnTheLeft(essential, beta, tmp);
VERIFY_IS_APPROX(m1.norm(), m2.norm());
if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1, 0, rows - 1, cols).norm(), m1.norm());
VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0, 0)), numext::real(m1(0, 0)));
VERIFY_IS_APPROX(numext::real(m1(0, 0)), alpha);
v1 = VectorType::Random(rows);
if (even) v1.tail(rows - 1).setZero();
SquareMatrixType m3(rows, rows), m4(rows, rows);
m3.rowwise() = v1.transpose();
m4 = m3;
m3.row(0).makeHouseholder(essential, beta, alpha);
m3.applyHouseholderOnTheRight(essential.conjugate(), beta, tmp);
VERIFY_IS_APPROX(m3.norm(), m4.norm());
if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0, 1, rows, rows - 1).norm(), m3.norm());
VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0, 0)), numext::real(m3(0, 0)));
VERIFY_IS_APPROX(numext::real(m3(0, 0)), alpha);
// test householder sequence on the left with a shift
Index shift = internal::random<Index>(0, std::max<Index>(rows - 2, 0));
Index brows = rows - shift;
m1.setRandom(rows, cols);
HBlockMatrixType hbm = m1.block(shift, 0, brows, cols);
HouseholderQR<HBlockMatrixType> qr(hbm);
m2 = m1;
m2.block(shift, 0, brows, cols) = qr.matrixQR();
HCoeffsVectorType hc = qr.hCoeffs().conjugate();
HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc);
hseq.setLength(hc.size()).setShift(shift);
VERIFY(hseq.length() == hc.size());
VERIFY(hseq.shift() == shift);
MatrixType m5 = m2;
m5.block(shift, 0, brows, cols).template triangularView<StrictlyLower>().setZero();
VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly
m3 = hseq;
VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying
SquareMatrixType hseq_mat = hseq;
SquareMatrixType hseq_mat_conj = hseq.conjugate();
SquareMatrixType hseq_mat_adj = hseq.adjoint();
SquareMatrixType hseq_mat_trans = hseq.transpose();
SquareMatrixType m6 = SquareMatrixType::Random(rows, rows);
VERIFY_IS_APPROX(hseq_mat.adjoint(), hseq_mat_adj);
VERIFY_IS_APPROX(hseq_mat.conjugate(), hseq_mat_conj);
VERIFY_IS_APPROX(hseq_mat.transpose(), hseq_mat_trans);
VERIFY_IS_APPROX(hseq * m6, hseq_mat * m6);
VERIFY_IS_APPROX(hseq.adjoint() * m6, hseq_mat_adj * m6);
VERIFY_IS_APPROX(hseq.conjugate() * m6, hseq_mat_conj * m6);
VERIFY_IS_APPROX(hseq.transpose() * m6, hseq_mat_trans * m6);
VERIFY_IS_APPROX(m6 * hseq, m6 * hseq_mat);
VERIFY_IS_APPROX(m6 * hseq.adjoint(), m6 * hseq_mat_adj);
VERIFY_IS_APPROX(m6 * hseq.conjugate(), m6 * hseq_mat_conj);
VERIFY_IS_APPROX(m6 * hseq.transpose(), m6 * hseq_mat_trans);
// test householder sequence on the right with a shift
TMatrixType tm2 = m2.transpose();
HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc);
rhseq.setLength(hc.size()).setShift(shift);
VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly
m3 = rhseq;
VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying
}
template <typename MatrixType>
void householder_update(const MatrixType& m) {
// This test is covering the internal::householder_qr_inplace_update function.
// At time of writing, there is not public API that exposes this update behavior directly,
// so we are testing the internal implementation.
const Index rows = m.rows();
const Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
typedef Matrix<Scalar, Dynamic, 1> VectorX;
VectorX tmpOwner(cols);
Scalar* tmp = tmpOwner.data();
// The matrix to factorize.
const MatrixType A = MatrixType::Random(rows, cols);
// matQR and hCoeffs will hold the factorization of A,
// built by a sequence of calls to `update`.
MatrixType matQR(rows, cols);
HCoeffsVectorType hCoeffs(cols);
// householder_qr_inplace_update should be able to build a QR factorization one column at a time.
// We verify this by starting with an empty factorization and 'updating' one column at a time.
// After each call to update, we should have a QR factorization of the columns presented so far.
const Index size = (std::min)(rows, cols); // QR can only go up to 'size' b/c that's full rank.
for (Index k = 0; k != size; ++k) {
// Make a copy of the column to prevent any possibility of 'leaking' other parts of A.
const VectorType newColumn = A.col(k);
internal::householder_qr_inplace_update(matQR, hCoeffs, newColumn, k, tmp);
// Verify Property:
// matQR.leftCols(k+1) and hCoeffs.head(k+1) hold
// a QR factorization of A.leftCols(k+1).
// This is the fundamental guarantee of householder_qr_inplace_update.
{
const MatrixX matQR_k = matQR.leftCols(k + 1);
const VectorX hCoeffs_k = hCoeffs.head(k + 1);
MatrixX R = matQR_k.template triangularView<Upper>();
MatrixX QxR = householderSequence(matQR_k, hCoeffs_k.conjugate()) * R;
VERIFY_IS_APPROX(QxR, A.leftCols(k + 1));
}
// Verify Property:
// A sequence of calls to 'householder_qr_inplace_update'
// should produce the same result as 'householder_qr_inplace_unblocked'.
// This is a property of the current implementation.
// If these implementations diverge in the future,
// then simply delete the test of this property.
{
MatrixX QR_at_once = A.leftCols(k + 1);
VectorX hCoeffs_at_once(k + 1);
internal::householder_qr_inplace_unblocked(QR_at_once, hCoeffs_at_once, tmp);
VERIFY_IS_APPROX(QR_at_once, matQR.leftCols(k + 1));
VERIFY_IS_APPROX(hCoeffs_at_once, hCoeffs.head(k + 1));
}
}
// Verify Property:
// We can go back and update any column to have a new value,
// and get a QR factorization of the columns up to that one.
{
const Index k = internal::random<Index>(0, size - 1);
VectorType newColumn = VectorType::Random(rows);
internal::householder_qr_inplace_update(matQR, hCoeffs, newColumn, k, tmp);
const MatrixX matQR_k = matQR.leftCols(k + 1);
const VectorX hCoeffs_k = hCoeffs.head(k + 1);
MatrixX R = matQR_k.template triangularView<Upper>();
MatrixX QxR = householderSequence(matQR_k, hCoeffs_k.conjugate()) * R;
VERIFY_IS_APPROX(QxR.leftCols(k), A.leftCols(k));
VERIFY_IS_APPROX(QxR.col(k), newColumn);
}
}
EIGEN_DECLARE_TEST(householder) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(householder(Matrix<double, 2, 2>()));
CALL_SUBTEST_2(householder(Matrix<float, 2, 3>()));
CALL_SUBTEST_3(householder(Matrix<double, 3, 5>()));
CALL_SUBTEST_4(householder(Matrix<float, 4, 4>()));
CALL_SUBTEST_5(householder(
MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_6(householder(
MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_7(householder(
MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_8(householder(Matrix<double, 1, 1>()));
CALL_SUBTEST_9(householder_update(Matrix<double, 3, 5>()));
CALL_SUBTEST_9(householder_update(Matrix<float, 4, 2>()));
CALL_SUBTEST_9(householder_update(
MatrixXcf(internal::random<Index>(1, EIGEN_TEST_MAX_SIZE), internal::random<Index>(1, EIGEN_TEST_MAX_SIZE))));
}
}