mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
173 lines
5.0 KiB
C++
173 lines
5.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
|
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
|
|
#include "main.h"
|
|
#include <Eigen/LevenbergMarquardt>
|
|
using namespace std;
|
|
using namespace Eigen;
|
|
|
|
template <typename Scalar>
|
|
struct DenseLM : DenseFunctor<Scalar> {
|
|
typedef DenseFunctor<Scalar> Base;
|
|
typedef typename Base::JacobianType JacobianType;
|
|
typedef Matrix<Scalar, Dynamic, 1> VectorType;
|
|
|
|
DenseLM(int n, int m) : DenseFunctor<Scalar>(n, m) {}
|
|
|
|
VectorType model(const VectorType& uv, VectorType& x) {
|
|
VectorType y; // Should change to use expression template
|
|
int m = Base::values();
|
|
int n = Base::inputs();
|
|
eigen_assert(uv.size() % 2 == 0);
|
|
eigen_assert(uv.size() == n);
|
|
eigen_assert(x.size() == m);
|
|
y.setZero(m);
|
|
int half = n / 2;
|
|
VectorBlock<const VectorType> u(uv, 0, half);
|
|
VectorBlock<const VectorType> v(uv, half, half);
|
|
for (int j = 0; j < m; j++) {
|
|
for (int i = 0; i < half; i++) y(j) += u(i) * std::exp(-(x(j) - i) * (x(j) - i) / (v(i) * v(i)));
|
|
}
|
|
return y;
|
|
}
|
|
void initPoints(VectorType& uv_ref, VectorType& x) {
|
|
m_x = x;
|
|
m_y = this->model(uv_ref, x);
|
|
}
|
|
|
|
int operator()(const VectorType& uv, VectorType& fvec) {
|
|
int m = Base::values();
|
|
int n = Base::inputs();
|
|
eigen_assert(uv.size() % 2 == 0);
|
|
eigen_assert(uv.size() == n);
|
|
eigen_assert(fvec.size() == m);
|
|
int half = n / 2;
|
|
VectorBlock<const VectorType> u(uv, 0, half);
|
|
VectorBlock<const VectorType> v(uv, half, half);
|
|
for (int j = 0; j < m; j++) {
|
|
fvec(j) = m_y(j);
|
|
for (int i = 0; i < half; i++) {
|
|
fvec(j) -= u(i) * std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i)));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
int df(const VectorType& uv, JacobianType& fjac) {
|
|
int m = Base::values();
|
|
int n = Base::inputs();
|
|
eigen_assert(n == uv.size());
|
|
eigen_assert(fjac.rows() == m);
|
|
eigen_assert(fjac.cols() == n);
|
|
int half = n / 2;
|
|
VectorBlock<const VectorType> u(uv, 0, half);
|
|
VectorBlock<const VectorType> v(uv, half, half);
|
|
for (int j = 0; j < m; j++) {
|
|
for (int i = 0; i < half; i++) {
|
|
fjac.coeffRef(j, i) = -std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i)));
|
|
fjac.coeffRef(j, i + half) = -2. * u(i) * (m_x(j) - i) * (m_x(j) - i) / (std::pow(v(i), 3)) *
|
|
std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i)));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
VectorType m_x, m_y; // Data Points
|
|
};
|
|
|
|
template <typename FunctorType, typename VectorType>
|
|
int test_minimizeLM(FunctorType& functor, VectorType& uv) {
|
|
LevenbergMarquardt<FunctorType> lm(functor);
|
|
LevenbergMarquardtSpace::Status info;
|
|
|
|
info = lm.minimize(uv);
|
|
|
|
VERIFY_IS_EQUAL(info, 1);
|
|
// FIXME Check other parameters
|
|
return info;
|
|
}
|
|
|
|
template <typename FunctorType, typename VectorType>
|
|
int test_lmder(FunctorType& functor, VectorType& uv) {
|
|
typedef typename VectorType::Scalar Scalar;
|
|
LevenbergMarquardtSpace::Status info;
|
|
LevenbergMarquardt<FunctorType> lm(functor);
|
|
info = lm.lmder1(uv);
|
|
|
|
VERIFY_IS_EQUAL(info, 1);
|
|
// FIXME Check other parameters
|
|
return info;
|
|
}
|
|
|
|
template <typename FunctorType, typename VectorType>
|
|
int test_minimizeSteps(FunctorType& functor, VectorType& uv) {
|
|
LevenbergMarquardtSpace::Status info;
|
|
LevenbergMarquardt<FunctorType> lm(functor);
|
|
info = lm.minimizeInit(uv);
|
|
if (info == LevenbergMarquardtSpace::ImproperInputParameters) return info;
|
|
do {
|
|
info = lm.minimizeOneStep(uv);
|
|
} while (info == LevenbergMarquardtSpace::Running);
|
|
|
|
VERIFY_IS_EQUAL(info, 1);
|
|
// FIXME Check other parameters
|
|
return info;
|
|
}
|
|
|
|
template <typename T>
|
|
void test_denseLM_T() {
|
|
typedef Matrix<T, Dynamic, 1> VectorType;
|
|
|
|
int inputs = 10;
|
|
int values = 1000;
|
|
DenseLM<T> dense_gaussian(inputs, values);
|
|
VectorType uv(inputs), uv_ref(inputs);
|
|
VectorType x(values);
|
|
|
|
// Generate the reference solution
|
|
uv_ref << -2, 1, 4, 8, 6, 1.8, 1.2, 1.1, 1.9, 3;
|
|
|
|
// Generate the reference data points
|
|
x.setRandom();
|
|
x = 10 * x;
|
|
x.array() += 10;
|
|
dense_gaussian.initPoints(uv_ref, x);
|
|
|
|
// Generate the initial parameters
|
|
VectorBlock<VectorType> u(uv, 0, inputs / 2);
|
|
VectorBlock<VectorType> v(uv, inputs / 2, inputs / 2);
|
|
|
|
// Solve the optimization problem
|
|
|
|
// Solve in one go
|
|
u.setOnes();
|
|
v.setOnes();
|
|
test_minimizeLM(dense_gaussian, uv);
|
|
|
|
// Solve until the machine precision
|
|
u.setOnes();
|
|
v.setOnes();
|
|
test_lmder(dense_gaussian, uv);
|
|
|
|
// Solve step by step
|
|
v.setOnes();
|
|
u.setOnes();
|
|
test_minimizeSteps(dense_gaussian, uv);
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(denseLM) {
|
|
CALL_SUBTEST_2(test_denseLM_T<double>());
|
|
|
|
// CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
|
|
}
|