mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
80 lines
2.9 KiB
C++
80 lines
2.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/FFT.h>
|
|
|
|
using namespace std;
|
|
|
|
template <class T>
|
|
void test_fft(int nfft)
|
|
{
|
|
typedef typename Eigen::FFT<T>::Complex Complex;
|
|
|
|
FFT<T> fft;
|
|
|
|
vector<Complex> inbuf(nfft);
|
|
vector<Complex> buf3(nfft);
|
|
vector<Complex> outbuf(nfft);
|
|
for (int k=0;k<nfft;++k)
|
|
inbuf[k]= Complex(
|
|
(T)(rand()/(double)RAND_MAX - .5),
|
|
(T)(rand()/(double)RAND_MAX - .5) );
|
|
fft.fwd( &outbuf[0] , &inbuf[0] ,nfft);
|
|
fft.inv( &buf3[0] , &outbuf[0] ,nfft);
|
|
|
|
long double totalpower=0;
|
|
long double difpower=0;
|
|
for (int k0=0;k0<nfft;++k0) {
|
|
complex<long double> acc = 0;
|
|
long double phinc = 2*k0* M_PIl / nfft;
|
|
for (int k1=0;k1<nfft;++k1) {
|
|
complex<long double> x(inbuf[k1].real(),inbuf[k1].imag());
|
|
acc += x * exp( complex<long double>(0,-k1*phinc) );
|
|
}
|
|
totalpower += norm(acc);
|
|
complex<long double> x(outbuf[k0].real(),outbuf[k0].imag());
|
|
complex<long double> dif = acc - x;
|
|
difpower += norm(dif);
|
|
}
|
|
long double rmse = sqrt(difpower/totalpower);
|
|
VERIFY( rmse < 1e-5 );// gross check
|
|
|
|
totalpower=0;
|
|
difpower=0;
|
|
for (int k=0;k<nfft;++k) {
|
|
totalpower += norm( inbuf[k] );
|
|
difpower += norm(inbuf[k] - buf3[k]);
|
|
}
|
|
rmse = sqrt(difpower/totalpower);
|
|
VERIFY( rmse < 1e-5 );// gross check
|
|
}
|
|
|
|
void test_FFT()
|
|
{
|
|
CALL_SUBTEST(( test_fft<float>(32) )); CALL_SUBTEST(( test_fft<double>(32) )); CALL_SUBTEST(( test_fft<long double>(32) ));
|
|
CALL_SUBTEST(( test_fft<float>(1024) )); CALL_SUBTEST(( test_fft<double>(1024) )); CALL_SUBTEST(( test_fft<long double>(1024) ));
|
|
CALL_SUBTEST(( test_fft<float>(2*3*4*5*7) )); CALL_SUBTEST(( test_fft<double>(2*3*4*5*7) )); CALL_SUBTEST(( test_fft<long double>(2*3*4*5*7) ));
|
|
}
|