mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
101 lines
4.0 KiB
C++
101 lines
4.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the Free Software
|
|
// Foundation; either version 2 or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
// details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
|
|
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
//
|
|
// As a special exception, if other files instantiate templates or use macros
|
|
// or functions from this file, or you compile this file and link it
|
|
// with other works to produce a work based on this file, this file does not
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
|
// License. This exception does not invalidate any other reasons why a work
|
|
// based on this file might be covered by the GNU General Public License.
|
|
|
|
#include "main.h"
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename MatrixType> void product(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
Identity.h Product.h
|
|
*/
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, 1> VectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
// this test relies a lot on Random.h, and there's not much more that we can do
|
|
// to test it, hence I consider that we will have tested Random.h
|
|
MatrixType m1 = MatrixType::random(rows, cols),
|
|
m2 = MatrixType::random(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::zero(rows, cols),
|
|
identity = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
|
|
::identity(rows, rows),
|
|
square = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
|
|
::random(rows, rows);
|
|
VectorType v1 = VectorType::random(rows),
|
|
v2 = VectorType::random(rows),
|
|
vzero = VectorType::zero(rows);
|
|
|
|
Scalar s1 = random<Scalar>();
|
|
|
|
int r = random<int>(0, rows-1),
|
|
c = random<int>(0, cols-1);
|
|
|
|
// begin testing Product.h: only associativity for now
|
|
// (we use Transpose.h but this doesn't count as a test for it)
|
|
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
|
|
m3 = m1;
|
|
m3 *= (m1.transpose() * m2);
|
|
VERIFY_IS_APPROX(m3, m1*(m1.transpose()*m2));
|
|
VERIFY_IS_APPROX(m3, m1.lazyProduct(m1.transpose()*m2));
|
|
|
|
// continue testing Product.h: distributivity
|
|
VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
|
|
VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
|
|
|
|
// continue testing Product.h: compatibility with ScalarMultiple.h
|
|
VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
|
|
VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
|
|
|
|
// continue testing Product.h: lazyProduct
|
|
VERIFY_IS_APPROX(square.lazyProduct(m1), square*m1);
|
|
// again, test operator() to check const-qualification
|
|
s1 += square.lazyProduct(m1)(r,c);
|
|
|
|
// test Product.h together with Identity.h
|
|
VERIFY_IS_APPROX(m1, identity*m1);
|
|
VERIFY_IS_APPROX(v1, identity*v1);
|
|
// again, test operator() to check const-qualification
|
|
VERIFY_IS_APPROX(MatrixType::identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
|
|
}
|
|
|
|
void EigenTest::testProduct()
|
|
{
|
|
for(int i = 0; i < m_repeat; i++) {
|
|
product(Matrix<float, 1, 1>());
|
|
product(Matrix4d());
|
|
product(MatrixXcf(3, 3));
|
|
product(MatrixXi(8, 12));
|
|
product(MatrixXcd(20, 20));
|
|
}
|
|
}
|
|
|
|
} // namespace Eigen
|