mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
70 lines
2.4 KiB
C++
70 lines
2.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "sparse.h"
|
|
#include <Eigen/SparseExtra>
|
|
|
|
#ifdef EIGEN_TAUCS_SUPPORT
|
|
#include <Eigen/TaucsSupport>
|
|
#endif
|
|
|
|
template<typename Scalar> void sparse_ldlt(int rows, int cols)
|
|
{
|
|
double density = std::max(8./(rows*cols), 0.01);
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
|
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector refX(cols), x(cols);
|
|
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
|
|
for(int i=0; i<rows; ++i)
|
|
m2.coeffRef(i,i) = refMat2(i,i) = ei_abs(ei_real(refMat2(i,i)));
|
|
|
|
refX = refMat2.template selfadjointView<Upper>().ldlt().solve(b);
|
|
typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix;
|
|
x = b;
|
|
SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
|
|
if (ldlt.succeeded())
|
|
ldlt.solveInPlace(x);
|
|
else
|
|
std::cerr << "warning LDLT failed\n";
|
|
|
|
VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
|
|
}
|
|
|
|
void test_sparse_ldlt()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(sparse_ldlt<double>(8, 8) );
|
|
int s = ei_random<int>(1,300);
|
|
CALL_SUBTEST_2(sparse_ldlt<std::complex<double> >(s,s) );
|
|
CALL_SUBTEST_1(sparse_ldlt<double>(s,s) );
|
|
}
|
|
}
|