mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
165 lines
4.7 KiB
C++
165 lines
4.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/AutoDiff>
|
|
|
|
template<typename Scalar>
|
|
EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y)
|
|
{
|
|
// return x+std::sin(y);
|
|
EIGEN_ASM_COMMENT("mybegin");
|
|
return static_cast<Scalar>(x*2 - std::pow(x,2) + 2*std::sqrt(y*y) - 4 * std::sin(x) + 2 * std::cos(y) - std::exp(-0.5*x*x));
|
|
//return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2;
|
|
EIGEN_ASM_COMMENT("myend");
|
|
}
|
|
|
|
template<typename _Scalar, int NX=Dynamic, int NY=Dynamic>
|
|
struct TestFunc1
|
|
{
|
|
typedef _Scalar Scalar;
|
|
enum {
|
|
InputsAtCompileTime = NX,
|
|
ValuesAtCompileTime = NY
|
|
};
|
|
typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
|
|
typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
|
|
typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
|
|
|
|
int m_inputs, m_values;
|
|
|
|
TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
|
|
TestFunc1(int inputs, int values) : m_inputs(inputs), m_values(values) {}
|
|
|
|
int inputs() const { return m_inputs; }
|
|
int values() const { return m_values; }
|
|
|
|
template<typename T>
|
|
void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const
|
|
{
|
|
Matrix<T,ValuesAtCompileTime,1>& v = *_v;
|
|
|
|
v[0] = 2 * x[0] * x[0] + x[0] * x[1];
|
|
v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1];
|
|
if(inputs()>2)
|
|
{
|
|
v[0] += 0.5 * x[2];
|
|
v[1] += x[2];
|
|
}
|
|
if(values()>2)
|
|
{
|
|
v[2] = 3 * x[1] * x[0] * x[0];
|
|
}
|
|
if (inputs()>2 && values()>2)
|
|
v[2] *= x[2];
|
|
}
|
|
|
|
void operator() (const InputType& x, ValueType* v, JacobianType* _j) const
|
|
{
|
|
(*this)(x, v);
|
|
|
|
if(_j)
|
|
{
|
|
JacobianType& j = *_j;
|
|
|
|
j(0,0) = 4 * x[0] + x[1];
|
|
j(1,0) = 3 * x[1];
|
|
|
|
j(0,1) = x[0];
|
|
j(1,1) = 3 * x[0] + 2 * 0.5 * x[1];
|
|
|
|
if (inputs()>2)
|
|
{
|
|
j(0,2) = 0.5;
|
|
j(1,2) = 1;
|
|
}
|
|
if(values()>2)
|
|
{
|
|
j(2,0) = 3 * x[1] * 2 * x[0];
|
|
j(2,1) = 3 * x[0] * x[0];
|
|
}
|
|
if (inputs()>2 && values()>2)
|
|
{
|
|
j(2,0) *= x[2];
|
|
j(2,1) *= x[2];
|
|
|
|
j(2,2) = 3 * x[1] * x[0] * x[0];
|
|
j(2,2) = 3 * x[1] * x[0] * x[0];
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename Func> void forward_jacobian(const Func& f)
|
|
{
|
|
typename Func::InputType x = Func::InputType::Random(f.inputs());
|
|
typename Func::ValueType y(f.values()), yref(f.values());
|
|
typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs());
|
|
|
|
jref.setZero();
|
|
yref.setZero();
|
|
f(x,&yref,&jref);
|
|
// std::cerr << y.transpose() << "\n\n";;
|
|
// std::cerr << j << "\n\n";;
|
|
|
|
j.setZero();
|
|
y.setZero();
|
|
AutoDiffJacobian<Func> autoj(f);
|
|
autoj(x, &y, &j);
|
|
// std::cerr << y.transpose() << "\n\n";;
|
|
// std::cerr << j << "\n\n";;
|
|
|
|
VERIFY_IS_APPROX(y, yref);
|
|
VERIFY_IS_APPROX(j, jref);
|
|
}
|
|
|
|
void test_autodiff_scalar()
|
|
{
|
|
std::cerr << foo<float>(1,2) << "\n";
|
|
typedef AutoDiffScalar<Vector2f> AD;
|
|
AD ax(1,Vector2f::UnitX());
|
|
AD ay(2,Vector2f::UnitY());
|
|
foo<AD>(ax,ay);
|
|
std::cerr << foo<AD>(ax,ay).value() << " <> "
|
|
<< foo<AD>(ax,ay).derivatives().transpose() << "\n\n";
|
|
}
|
|
|
|
void test_autodiff_jacobian()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) ));
|
|
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) ));
|
|
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
|
|
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
|
|
CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
|
|
}
|
|
}
|
|
|
|
void test_autodiff()
|
|
{
|
|
test_autodiff_scalar();
|
|
test_autodiff_jacobian();
|
|
}
|
|
|