mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
98ff17eb9e
This also fixes underflow issues when scaling complex matrices through complex/complex operator.
131 lines
5.1 KiB
C++
131 lines
5.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
static bool g_called;
|
|
#define EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN { g_called = true; }
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void linearStructure(const MatrixType& m)
|
|
{
|
|
using std::abs;
|
|
/* this test covers the following files:
|
|
CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h
|
|
*/
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
// this test relies a lot on Random.h, and there's not much more that we can do
|
|
// to test it, hence I consider that we will have tested Random.h
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols);
|
|
|
|
Scalar s1 = internal::random<Scalar>();
|
|
while (abs(s1)<1e-3) s1 = internal::random<Scalar>();
|
|
|
|
Index r = internal::random<Index>(0, rows-1),
|
|
c = internal::random<Index>(0, cols-1);
|
|
|
|
VERIFY_IS_APPROX(-(-m1), m1);
|
|
VERIFY_IS_APPROX(m1+m1, 2*m1);
|
|
VERIFY_IS_APPROX(m1+m2-m1, m2);
|
|
VERIFY_IS_APPROX(-m2+m1+m2, m1);
|
|
VERIFY_IS_APPROX(m1*s1, s1*m1);
|
|
VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
|
|
VERIFY_IS_APPROX((-m1+m2)*s1, -s1*m1+s1*m2);
|
|
m3 = m2; m3 += m1;
|
|
VERIFY_IS_APPROX(m3, m1+m2);
|
|
m3 = m2; m3 -= m1;
|
|
VERIFY_IS_APPROX(m3, m2-m1);
|
|
m3 = m2; m3 *= s1;
|
|
VERIFY_IS_APPROX(m3, s1*m2);
|
|
if(!NumTraits<Scalar>::IsInteger)
|
|
{
|
|
m3 = m2; m3 /= s1;
|
|
VERIFY_IS_APPROX(m3, m2/s1);
|
|
}
|
|
|
|
// again, test operator() to check const-qualification
|
|
VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c)));
|
|
VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c)));
|
|
VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
|
|
VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c)));
|
|
VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
|
|
if(!NumTraits<Scalar>::IsInteger)
|
|
VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);
|
|
|
|
// use .block to disable vectorization and compare to the vectorized version
|
|
VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1);
|
|
VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1));
|
|
VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1);
|
|
VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
|
|
}
|
|
|
|
// Make sure that complex * real and real * complex are properly optimized
|
|
template<typename MatrixType> void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
|
|
RealScalar s = internal::random<RealScalar>();
|
|
MatrixType m1 = MatrixType::Random(rows, cols);
|
|
|
|
g_called = false;
|
|
VERIFY_IS_APPROX(s*m1, Scalar(s)*m1);
|
|
VERIFY(g_called && "real * matrix<complex> not properly optimized");
|
|
|
|
g_called = false;
|
|
VERIFY_IS_APPROX(m1*s, m1*Scalar(s));
|
|
VERIFY(g_called && "matrix<complex> * real not properly optimized");
|
|
|
|
g_called = false;
|
|
VERIFY_IS_APPROX(m1/s, m1/Scalar(s));
|
|
VERIFY(g_called && "matrix<complex> / real not properly optimized");
|
|
}
|
|
|
|
void test_linearstructure()
|
|
{
|
|
g_called = true;
|
|
VERIFY(g_called); // avoid `unneeded-internal-declaration` warning.
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( linearStructure(Matrix2f()) );
|
|
CALL_SUBTEST_3( linearStructure(Vector3d()) );
|
|
CALL_SUBTEST_4( linearStructure(Matrix4d()) );
|
|
CALL_SUBTEST_5( linearStructure(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
|
|
CALL_SUBTEST_6( linearStructure(MatrixXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
|
|
CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
|
|
CALL_SUBTEST_10( real_complex<Matrix4cd>() );
|
|
CALL_SUBTEST_10( real_complex<MatrixXcf>(10,10) );
|
|
}
|
|
|
|
#ifdef EIGEN_TEST_PART_4
|
|
{
|
|
// make sure that /=scalar and /scalar do not overflow
|
|
// rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not
|
|
Matrix4d m2, m3;
|
|
m3 = m2 = Matrix4d::Random()*1e-20;
|
|
m2 = m2 / 4.9e-320;
|
|
VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones());
|
|
m3 /= 4.9e-320;
|
|
VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones());
|
|
|
|
|
|
}
|
|
#endif
|
|
}
|