mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
bfaa7f4ffe
Use Christoph Hertzberg's suggestion to use exponent laws.
48 lines
1.6 KiB
C++
48 lines
1.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/MatrixFunctions>
|
|
|
|
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
|
|
struct generateTestMatrix;
|
|
|
|
// for real matrices, make sure none of the eigenvalues are negative
|
|
template <typename MatrixType>
|
|
struct generateTestMatrix<MatrixType,0>
|
|
{
|
|
static void run(MatrixType& result, typename MatrixType::Index size)
|
|
{
|
|
MatrixType mat = MatrixType::Random(size, size);
|
|
EigenSolver<MatrixType> es(mat);
|
|
typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
|
|
for (typename MatrixType::Index i = 0; i < size; ++i) {
|
|
if (eivals(i).imag() == 0 && eivals(i).real() < 0)
|
|
eivals(i) = -eivals(i);
|
|
}
|
|
result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
|
|
}
|
|
};
|
|
|
|
// for complex matrices, any matrix is fine
|
|
template <typename MatrixType>
|
|
struct generateTestMatrix<MatrixType,1>
|
|
{
|
|
static void run(MatrixType& result, typename MatrixType::Index size)
|
|
{
|
|
result = MatrixType::Random(size, size);
|
|
}
|
|
};
|
|
|
|
template <typename Derived, typename OtherDerived>
|
|
double relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B)
|
|
{
|
|
return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum()));
|
|
}
|