mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
201 lines
11 KiB
C++
201 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
// work around "uninitialized" warnings and give that option some testing
|
|
#define EIGEN_INITIALIZE_MATRICES_BY_ZERO
|
|
|
|
#ifndef EIGEN_NO_STATIC_ASSERT
|
|
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
|
|
#endif
|
|
|
|
#if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3)
|
|
|
|
#ifndef EIGEN_DONT_VECTORIZE
|
|
#define EIGEN_DONT_VECTORIZE
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#include "main.h"
|
|
|
|
using namespace std;
|
|
|
|
template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
|
|
{
|
|
typedef std::complex<float> CF;
|
|
typedef std::complex<double> CD;
|
|
typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
|
|
typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
|
|
typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
|
|
typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
|
|
typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
|
|
typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
|
|
typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
|
|
typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
|
|
|
|
Mat_f mf = Mat_f::Random(size,size);
|
|
Mat_d md = mf.template cast<double>();
|
|
Mat_cf mcf = Mat_cf::Random(size,size);
|
|
Mat_cd mcd = mcf.template cast<complex<double> >();
|
|
Mat_cd rcd = mcd;
|
|
Vec_f vf = Vec_f::Random(size,1);
|
|
Vec_d vd = vf.template cast<double>();
|
|
Vec_cf vcf = Vec_cf::Random(size,1);
|
|
Vec_cd vcd = vcf.template cast<complex<double> >();
|
|
float sf = internal::random<float>();
|
|
double sd = internal::random<double>();
|
|
complex<float> scf = internal::random<complex<float> >();
|
|
complex<double> scd = internal::random<complex<double> >();
|
|
|
|
|
|
mf+mf;
|
|
VERIFY_RAISES_ASSERT(mf+md);
|
|
#ifndef EIGEN_HAS_STD_RESULT_OF
|
|
// this one does not even compile with C++11
|
|
VERIFY_RAISES_ASSERT(mf+mcf);
|
|
#endif
|
|
|
|
#ifdef EIGEN_DONT_VECTORIZE
|
|
VERIFY_RAISES_ASSERT(vf=vd);
|
|
VERIFY_RAISES_ASSERT(vf+=vd);
|
|
VERIFY_RAISES_ASSERT(mcd=md);
|
|
#endif
|
|
|
|
// check scalar products
|
|
VERIFY_IS_APPROX(vcf * sf , vcf * complex<float>(sf));
|
|
VERIFY_IS_APPROX(sd * vcd, complex<double>(sd) * vcd);
|
|
VERIFY_IS_APPROX(vf * scf , vf.template cast<complex<float> >() * scf);
|
|
VERIFY_IS_APPROX(scd * vd, scd * vd.template cast<complex<double> >());
|
|
|
|
// check dot product
|
|
vf.dot(vf);
|
|
#if 0 // we get other compilation errors here than just static asserts
|
|
VERIFY_RAISES_ASSERT(vd.dot(vf));
|
|
#endif
|
|
VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));
|
|
|
|
// check diagonal product
|
|
VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
|
|
VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
|
|
VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
|
|
VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
|
|
|
|
// vd.asDiagonal() * mf; // does not even compile
|
|
// vcd.asDiagonal() * mf; // does not even compile
|
|
|
|
// check inner product
|
|
VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());
|
|
|
|
// check outer product
|
|
VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
|
|
|
|
// coeff wise product
|
|
|
|
VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
|
|
|
|
Mat_cd mcd2 = mcd;
|
|
VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
|
|
|
|
// check matrix-matrix products
|
|
VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
|
|
VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
|
|
VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
|
|
VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());
|
|
|
|
VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
|
|
VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
|
|
VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
|
|
VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());
|
|
|
|
VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast<CD>().eval().adjoint()*mcd);
|
|
VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast<CD>());
|
|
VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast<CD>().eval().adjoint()*mcd.adjoint());
|
|
VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast<CD>().adjoint());
|
|
VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast<CD>().eval()*mcd.adjoint());
|
|
VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast<CD>().adjoint());
|
|
|
|
VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast<CF>().eval().adjoint()*mcf);
|
|
VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast<CF>());
|
|
VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast<CF>().eval().adjoint()*mcf.adjoint());
|
|
VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast<CF>().adjoint());
|
|
VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast<CF>().eval()*mcf.adjoint());
|
|
VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast<CF>().adjoint());
|
|
|
|
VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
|
|
VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
|
|
VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
|
|
VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());
|
|
|
|
VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval());
|
|
VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
|
|
VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf);
|
|
VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);
|
|
|
|
VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
|
|
VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
|
|
VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
|
|
VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());
|
|
|
|
VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast<CD>().eval());
|
|
VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
|
|
VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast<CD>().eval()*mcd);
|
|
VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
|
|
|
|
VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>());
|
|
VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Lower>());
|
|
VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView<Upper>(), sd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Upper>());
|
|
VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView<Lower>(), scd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Lower>());
|
|
VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>());
|
|
VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Upper>());
|
|
VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Lower>());
|
|
VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Upper>());
|
|
|
|
// Not supported yet: trmm
|
|
// VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(), sd*mcd*md.template cast<CD>().eval().template triangularView<Lower>());
|
|
// VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template cast<CD>().eval().template triangularView<Upper>());
|
|
// VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(), sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>());
|
|
// VERIFY_IS_APPROX(scd*md*mcd.template triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>());
|
|
|
|
// Not supported yet: symv
|
|
// VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
|
|
// VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>());
|
|
// VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Lower>());
|
|
// VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
|
|
|
|
// Not supported yet: symm
|
|
// VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
|
|
// VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
|
|
// VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
|
|
// VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
|
|
|
|
rcd.setZero();
|
|
VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md),
|
|
Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
|
|
VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd),
|
|
Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
|
|
VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md),
|
|
Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
|
|
VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd),
|
|
Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
|
|
}
|
|
|
|
void test_mixingtypes()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(mixingtypes<3>());
|
|
CALL_SUBTEST_2(mixingtypes<4>());
|
|
CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
|
|
|
|
CALL_SUBTEST_4(mixingtypes<3>());
|
|
CALL_SUBTEST_5(mixingtypes<4>());
|
|
CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
|
|
}
|
|
}
|