eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
Emil Fresk 6edd2e2851 Made AutoDiffJacobian more intuitive to use and updated for C++11
Changes:
* Removed unnecessary types from the Functor by inferring from its types
* Removed inputs() function reference, replaced with .rows()
* Updated the forward constructor to use variadic templates
* Added optional parameters to the Fuctor for passing parameters,
  control signals, etc
* Has been tested with fixed size and dynamic matricies

Ammendment by chtz: overload operator() for compatibility with not fully conforming compilers
2016-09-16 14:03:55 +02:00

109 lines
3.1 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_AUTODIFF_JACOBIAN_H
#define EIGEN_AUTODIFF_JACOBIAN_H
namespace Eigen
{
template<typename Functor> class AutoDiffJacobian : public Functor
{
public:
AutoDiffJacobian() : Functor() {}
AutoDiffJacobian(const Functor& f) : Functor(f) {}
// forward constructors
#if EIGEN_HAS_VARIADIC_TEMPLATES
template<typename... T>
AutoDiffJacobian(const T& ...Values) : Functor(Values...) {}
#else
template<typename T0>
AutoDiffJacobian(const T0& a0) : Functor(a0) {}
template<typename T0, typename T1>
AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
template<typename T0, typename T1, typename T2>
AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {}
#endif
typedef typename Functor::InputType InputType;
typedef typename Functor::ValueType ValueType;
typedef typename ValueType::Scalar Scalar;
enum {
InputsAtCompileTime = InputType::RowsAtCompileTime,
ValuesAtCompileTime = ValueType::RowsAtCompileTime
};
typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType;
typedef typename JacobianType::Index Index;
typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType;
typedef AutoDiffScalar<DerivativeType> ActiveScalar;
typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
#if EIGEN_HAS_VARIADIC_TEMPLATES
// Some compilers don't accept variadic parameters after a default parameter,
// i.e., we can't just write _jac=0 but we need to overload operator():
EIGEN_STRONG_INLINE
void operator() (const InputType& x, ValueType* v) const
{
this->operator()(x, v, 0);
}
template<typename... ParamsType>
void operator() (const InputType& x, ValueType* v, JacobianType* _jac,
const ParamsType&... Params) const
#else
void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const
#endif
{
eigen_assert(v!=0);
if (!_jac)
{
#if EIGEN_HAS_VARIADIC_TEMPLATES
Functor::operator()(x, v, Params...);
#else
Functor::operator()(x, v);
#endif
return;
}
JacobianType& jac = *_jac;
ActiveInput ax = x.template cast<ActiveScalar>();
ActiveValue av(jac.rows());
if(InputsAtCompileTime==Dynamic)
for (Index j=0; j<jac.rows(); j++)
av[j].derivatives().resize(x.rows());
for (Index i=0; i<jac.cols(); i++)
ax[i].derivatives() = DerivativeType::Unit(x.rows(),i);
#if EIGEN_HAS_VARIADIC_TEMPLATES
Functor::operator()(ax, &av, Params...);
#else
Functor::operator()(ax, &av);
#endif
for (Index i=0; i<jac.rows(); i++)
{
(*v)[i] = av[i].value();
jac.row(i) = av[i].derivatives();
}
}
};
}
#endif // EIGEN_AUTODIFF_JACOBIAN_H