mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-21 03:11:25 +08:00
126 lines
5.1 KiB
C++
126 lines
5.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename T> bool isNotNaN(const T& x)
|
|
{
|
|
return x==x;
|
|
}
|
|
|
|
// workaround aggressive optimization in ICC
|
|
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
|
|
|
|
template<typename T> bool isFinite(const T& x)
|
|
{
|
|
return isNotNaN(sub(x,x));
|
|
}
|
|
|
|
template<typename T> EIGEN_DONT_INLINE T copy(const T& x)
|
|
{
|
|
return x;
|
|
}
|
|
|
|
template<typename MatrixType> void stable_norm(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
StableNorm.h
|
|
*/
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
|
|
// Check the basic machine-dependent constants.
|
|
{
|
|
int ibeta, it, iemin, iemax;
|
|
|
|
ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
|
|
it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
|
|
iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
|
|
iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
|
|
|
|
VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2))
|
|
&& "the stable norm algorithm cannot be guaranteed on this computer");
|
|
}
|
|
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
Scalar big = internal::random<Scalar>() * (std::numeric_limits<RealScalar>::max() * RealScalar(1e-4));
|
|
Scalar small = internal::random<Scalar>() * (std::numeric_limits<RealScalar>::min() * RealScalar(1e4));
|
|
|
|
MatrixType vzero = MatrixType::Zero(rows, cols),
|
|
vrand = MatrixType::Random(rows, cols),
|
|
vbig(rows, cols),
|
|
vsmall(rows,cols);
|
|
|
|
vbig.fill(big);
|
|
vsmall.fill(small);
|
|
|
|
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
|
|
VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm());
|
|
VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm());
|
|
VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm());
|
|
|
|
RealScalar size = static_cast<RealScalar>(m.size());
|
|
|
|
// test isFinite
|
|
VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity()));
|
|
VERIFY(!isFinite(internal::sqrt(-internal::abs(big))));
|
|
|
|
// test overflow
|
|
VERIFY(isFinite(internal::sqrt(size)*internal::abs(big)));
|
|
VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vbig.squaredNorm())), internal::abs(internal::sqrt(size)*big)); // here the default norm must fail
|
|
VERIFY_IS_APPROX(vbig.stableNorm(), internal::sqrt(size)*internal::abs(big));
|
|
VERIFY_IS_APPROX(vbig.blueNorm(), internal::sqrt(size)*internal::abs(big));
|
|
VERIFY_IS_APPROX(vbig.hypotNorm(), internal::sqrt(size)*internal::abs(big));
|
|
|
|
// test underflow
|
|
VERIFY(isFinite(internal::sqrt(size)*internal::abs(small)));
|
|
VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vsmall.squaredNorm())), internal::abs(internal::sqrt(size)*small)); // here the default norm must fail
|
|
VERIFY_IS_APPROX(vsmall.stableNorm(), internal::sqrt(size)*internal::abs(small));
|
|
VERIFY_IS_APPROX(vsmall.blueNorm(), internal::sqrt(size)*internal::abs(small));
|
|
VERIFY_IS_APPROX(vsmall.hypotNorm(), internal::sqrt(size)*internal::abs(small));
|
|
|
|
// Test compilation of cwise() version
|
|
VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm());
|
|
VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm());
|
|
VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm());
|
|
VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm());
|
|
VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm());
|
|
VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm());
|
|
}
|
|
|
|
void test_stable_norm()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( stable_norm(Vector4d()) );
|
|
CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) );
|
|
CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) );
|
|
CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) );
|
|
}
|
|
}
|