eigen/test/sparse_vector.cpp
Gael Guennebaud 709e903335 Sparse module:
* extend unit tests
* add support for generic sum reduction and dot product
* optimize the cwise()* : this is a special case of CwiseBinaryOp where
  we only have to process the coeffs which are not null for *both* matrices.
  Perhaps there exist some other binary operations like that ?
2009-01-07 17:01:57 +00:00

93 lines
3.2 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "sparse.h"
template<typename Scalar> void sparse_vector(int rows, int cols)
{
double densityMat = std::max(8./(rows*cols), 0.01);
double densityVec = std::max(8./float(rows), 0.1);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
typedef SparseVector<Scalar> SparseVectorType;
typedef SparseMatrix<Scalar> SparseMatrixType;
Scalar eps = 1e-6;
SparseMatrixType m1(rows,cols);
SparseVectorType v1(rows), v2(rows), v3(rows);
DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
DenseVector refV1 = DenseVector::Random(rows),
refV2 = DenseVector::Random(rows),
refV3 = DenseVector::Random(rows);
std::vector<int> zerocoords, nonzerocoords;
initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords);
initSparse<Scalar>(densityMat, refM1, m1);
initSparse<Scalar>(densityVec, refV2, v2);
initSparse<Scalar>(densityVec, refV3, v3);
Scalar s1 = ei_random<Scalar>();
// test coeff and coeffRef
for (unsigned int i=0; i<zerocoords.size(); ++i)
{
VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps );
VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 );
}
{
VERIFY(int(nonzerocoords.size()) == v1.nonZeros());
int j=0;
for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j)
{
VERIFY(nonzerocoords[j]==it.index());
VERIFY(it.value()==v1[it.index()]);
}
}
VERIFY_IS_APPROX(v1, refV1);
v1.coeffRef(nonzerocoords[0]) = Scalar(5);
refV1.coeffRef(nonzerocoords[0]) = Scalar(5);
VERIFY_IS_APPROX(v1, refV1);
VERIFY_IS_APPROX(v1+v2, refV1+refV2);
VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3);
VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2);
std::cerr << v1.dot(v2) << " == " << refV1.dot(refV2) << "\n";
VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2));
}
void test_sparse_vector()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( sparse_vector<double>(8, 8) );
// CALL_SUBTEST( sparse_vector<std::complex<double> >(16, 16) );
CALL_SUBTEST( sparse_vector<double>(299, 535) );
}
}