mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
a814ebe180
#include<algorithm> so I'm not sure how it compiled at all for you :)
111 lines
3.5 KiB
C++
111 lines
3.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Sparse>
|
|
|
|
template<typename Scalar> void sparse()
|
|
{
|
|
int rows = 8, cols = 8;
|
|
double density = std::max(8./(rows*cols), 0.01);
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
|
Scalar eps = 1e-6;
|
|
|
|
SparseMatrix<Scalar> m(rows, cols);
|
|
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
|
|
|
|
std::vector<Vector2i> zeroCoords;
|
|
std::vector<Vector2i> nonzeroCoords;
|
|
m.startFill(rows*cols*density);
|
|
for(int j=0; j<cols; j++)
|
|
{
|
|
for(int i=0; i<rows; i++)
|
|
{
|
|
Scalar v = (ei_random<Scalar>(0,1) < density) ? ei_random<Scalar>() : 0;
|
|
if (v!=0)
|
|
{
|
|
m.fill(i,j) = v;
|
|
nonzeroCoords.push_back(Vector2i(i,j));
|
|
}
|
|
else
|
|
{
|
|
zeroCoords.push_back(Vector2i(i,j));
|
|
}
|
|
refMat(i,j) = v;
|
|
}
|
|
}
|
|
m.endFill();
|
|
|
|
VERIFY(zeroCoords.size()>0 && "re-run the test");
|
|
VERIFY(nonzeroCoords.size()>0 && "re-run the test");
|
|
|
|
// test coeff and coeffRef
|
|
for (int i=0; i<(int)zeroCoords.size(); ++i)
|
|
{
|
|
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
|
|
VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
|
|
}
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
|
|
m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
|
refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
|
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
|
|
// test SparseSetters
|
|
// coherent setter
|
|
// TODO extend the MatrixSetter
|
|
// {
|
|
// m.setZero();
|
|
// VERIFY_IS_NOT_APPROX(m, refMat);
|
|
// SparseSetter<SparseMatrix<Scalar>, FullyCoherentAccessPattern> w(m);
|
|
// for (int i=0; i<nonzeroCoords.size(); ++i)
|
|
// {
|
|
// w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
|
|
// }
|
|
// }
|
|
// VERIFY_IS_APPROX(m, refMat);
|
|
|
|
// random setter
|
|
{
|
|
m.setZero();
|
|
VERIFY_IS_NOT_APPROX(m, refMat);
|
|
SparseSetter<SparseMatrix<Scalar>, RandomAccessPattern> w(m);
|
|
std::vector<Vector2i> remaining = nonzeroCoords;
|
|
while(!remaining.empty())
|
|
{
|
|
int i = ei_random<int>(0,remaining.size()-1);
|
|
w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
|
|
remaining[i] = remaining.back();
|
|
remaining.pop_back();
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
}
|
|
|
|
void test_sparse()
|
|
{
|
|
sparse<double>();
|
|
}
|