2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-01-12 14:25:16 +08:00
eigen/unsupported/test/bdcsvd.cpp

214 lines
7.9 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/
#include "svd_common.h"
#include <iostream>
#include <Eigen/LU>
// check if "svd" is the good image of "m"
template<typename MatrixType>
void bdcsvd_check_full(const MatrixType& m, const BDCSVD<MatrixType>& svd)
{
svd_check_full< MatrixType, BDCSVD< MatrixType > >(m, svd);
}
// Compare to a reference value
template<typename MatrixType>
void bdcsvd_compare_to_full(const MatrixType& m,
unsigned int computationOptions,
const BDCSVD<MatrixType>& referenceSvd)
{
svd_compare_to_full< MatrixType, BDCSVD< MatrixType > >(m, computationOptions, referenceSvd);
} // end bdcsvd_compare_to_full
template<typename MatrixType>
void bdcsvd_solve(const MatrixType& m, unsigned int computationOptions)
{
svd_solve< MatrixType, BDCSVD< MatrixType > >(m, computationOptions);
} // end template bdcsvd_solve
// test the computations options
template<typename MatrixType>
void bdcsvd_test_all_computation_options(const MatrixType& m)
{
BDCSVD<MatrixType> fullSvd(m, ComputeFullU|ComputeFullV);
svd_test_computation_options_1< MatrixType, BDCSVD< MatrixType > >(m, fullSvd);
svd_test_computation_options_2< MatrixType, BDCSVD< MatrixType > >(m, fullSvd);
} // end bdcsvd_test_all_computation_options
// Call a test with all the computations options
template<typename MatrixType>
void bdcsvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
{
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
bdcsvd_test_all_computation_options<MatrixType>(m);
} // end template bdcsvd
// verify assert
template<typename MatrixType>
void bdcsvd_verify_assert(const MatrixType& m)
{
svd_verify_assert< MatrixType, BDCSVD< MatrixType > >(m);
}// end template bdcsvd_verify_assert
// test weird values
template<typename MatrixType>
void bdcsvd_inf_nan()
{
svd_inf_nan< MatrixType, BDCSVD< MatrixType > >();
}// end template bdcsvd_inf_nan
void bdcsvd_preallocate()
{
svd_preallocate< BDCSVD< MatrixXf > >();
} // end bdcsvd_preallocate
// compare the Singular values returned with Jacobi and Bdc
template<typename MatrixType>
void compare_bdc_jacobi(const MatrixType& a = MatrixType(), unsigned int computationOptions = 0)
{
std::cout << "debut compare" << std::endl;
MatrixType m = MatrixType::Random(a.rows(), a.cols());
BDCSVD<MatrixType> bdc_svd(m);
JacobiSVD<MatrixType> jacobi_svd(m);
VERIFY_IS_APPROX(bdc_svd.singularValues(), jacobi_svd.singularValues());
if(computationOptions & ComputeFullU)
VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
if(computationOptions & ComputeThinU)
VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
if(computationOptions & ComputeFullV)
VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
if(computationOptions & ComputeThinV)
VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
std::cout << "fin compare" << std::endl;
} // end template compare_bdc_jacobi
// call the tests
void test_bdcsvd()
{
// test of Dynamic defined Matrix (42, 42) of float
CALL_SUBTEST_11(( bdcsvd_verify_assert<Matrix<float,Dynamic,Dynamic> >
(Matrix<float,Dynamic,Dynamic>(42,42)) ));
CALL_SUBTEST_11(( compare_bdc_jacobi<Matrix<float,Dynamic,Dynamic> >
(Matrix<float,Dynamic,Dynamic>(42,42), 0) ));
CALL_SUBTEST_11(( bdcsvd<Matrix<float,Dynamic,Dynamic> >
(Matrix<float,Dynamic,Dynamic>(42,42)) ));
// test of Dynamic defined Matrix (50, 50) of double
CALL_SUBTEST_13(( bdcsvd_verify_assert<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(50,50)) ));
CALL_SUBTEST_13(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(50,50), 0) ));
CALL_SUBTEST_13(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(50, 50)) ));
// test of Dynamic defined Matrix (22, 22) of complex double
CALL_SUBTEST_14(( bdcsvd_verify_assert<Matrix<std::complex<double>,Dynamic,Dynamic> >
(Matrix<std::complex<double>,Dynamic,Dynamic>(22,22)) ));
CALL_SUBTEST_14(( compare_bdc_jacobi<Matrix<std::complex<double>,Dynamic,Dynamic> >
(Matrix<std::complex<double>, Dynamic, Dynamic> (22,22), 0) ));
CALL_SUBTEST_14(( bdcsvd<Matrix<std::complex<double>,Dynamic,Dynamic> >
(Matrix<std::complex<double>,Dynamic,Dynamic>(22, 22)) ));
// test of Dynamic defined Matrix (10, 10) of int
//CALL_SUBTEST_15(( bdcsvd_verify_assert<Matrix<int,Dynamic,Dynamic> >
// (Matrix<int,Dynamic,Dynamic>(10,10)) ));
//CALL_SUBTEST_15(( compare_bdc_jacobi<Matrix<int,Dynamic,Dynamic> >
// (Matrix<int,Dynamic,Dynamic>(10,10), 0) ));
//CALL_SUBTEST_15(( bdcsvd<Matrix<int,Dynamic,Dynamic> >
// (Matrix<int,Dynamic,Dynamic>(10, 10)) ));
// test of Dynamic defined Matrix (8, 6) of double
CALL_SUBTEST_16(( bdcsvd_verify_assert<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(8,6)) ));
CALL_SUBTEST_16(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(8, 6), 0) ));
CALL_SUBTEST_16(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(8, 6)) ));
// test of Dynamic defined Matrix (36, 12) of float
CALL_SUBTEST_17(( compare_bdc_jacobi<Matrix<float,Dynamic,Dynamic> >
(Matrix<float,Dynamic,Dynamic>(36, 12), 0) ));
CALL_SUBTEST_17(( bdcsvd<Matrix<float,Dynamic,Dynamic> >
(Matrix<float,Dynamic,Dynamic>(36, 12)) ));
// test of Dynamic defined Matrix (5, 8) of double
CALL_SUBTEST_18(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(5, 8), 0) ));
CALL_SUBTEST_18(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
(Matrix<double,Dynamic,Dynamic>(5, 8)) ));
// non regression tests
CALL_SUBTEST_3(( bdcsvd_verify_assert(Matrix3f()) ));
CALL_SUBTEST_4(( bdcsvd_verify_assert(Matrix4d()) ));
CALL_SUBTEST_7(( bdcsvd_verify_assert(MatrixXf(10,12)) ));
CALL_SUBTEST_8(( bdcsvd_verify_assert(MatrixXcd(7,5)) ));
// SUBTESTS 1 and 2 on specifics matrix
for(int i = 0; i < g_repeat; i++) {
Matrix2cd m;
m << 0, 1,
0, 1;
CALL_SUBTEST_1(( bdcsvd(m, false) ));
m << 1, 0,
1, 0;
CALL_SUBTEST_1(( bdcsvd(m, false) ));
Matrix2d n;
n << 0, 0,
0, 0;
CALL_SUBTEST_2(( bdcsvd(n, false) ));
n << 0, 0,
0, 1;
CALL_SUBTEST_2(( bdcsvd(n, false) ));
// Statics matrix don't work with BDSVD yet
// bdc algo on a random 3x3 float matrix
// CALL_SUBTEST_3(( bdcsvd<Matrix3f>() ));
// bdc algo on a random 4x4 double matrix
// CALL_SUBTEST_4(( bdcsvd<Matrix4d>() ));
// bdc algo on a random 3x5 float matrix
// CALL_SUBTEST_5(( bdcsvd<Matrix<float,3,5> >() ));
int r = internal::random<int>(1, 30),
c = internal::random<int>(1, 30);
CALL_SUBTEST_7(( bdcsvd<MatrixXf>(MatrixXf(r,c)) ));
CALL_SUBTEST_8(( bdcsvd<MatrixXcd>(MatrixXcd(r,c)) ));
(void) r;
(void) c;
// Test on inf/nan matrix
CALL_SUBTEST_7( bdcsvd_inf_nan<MatrixXf>() );
}
CALL_SUBTEST_7(( bdcsvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
CALL_SUBTEST_8(( bdcsvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
// Test problem size constructors
CALL_SUBTEST_7( BDCSVD<MatrixXf>(10,10) );
} // end test_bdcsvd