eigen/test/qr_colpivoting.cpp
Rasmus Munk Larsen acce4dd050 Change Eigen's ColPivHouseholderQR to use the numerically stable norm downdate formula from http://www.netlib.org/lapack/lawnspdf/lawn176.pdf, which has been used in LAPACK's xGEQPF and xGEQP3 since 2006. With the old formula, the code chooses the wrong pivots and fails to correctly determine rank on graded matrices.
This change also adds additional checks for non-increasing diagonal in R11 to existing unit tests, and adds a new unit test with the Kahan matrix, which consistently fails for the original code.

Benchmark timings on Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz. Code compiled with AVX & FMA. I just ran on square matrices of 3 difference sizes.

Benchmark               Time(ns)     CPU(ns) Iterations
-------------------------------------------------------
Before:
BM_EigencolPivQR/64        53677       53627      12890
BM_EigencolPivQR/512    15265408    15250784         46
BM_EigencolPivQR/4k  15403556228 15388788368          2

After (non-vectorized version):
Benchmark               Time(ns)     CPU(ns) Iterations  Degradation
--------------------------------------------------------------------
BM_EigencolPivQR/64        63736       63669      10844         18.5%
BM_EigencolPivQR/512    16052546    16037381         43          5.1%
BM_EigencolPivQR/4k  15149263620 15132025316          2         -2.0%

Performance-wise there seems to be a ~18.5% degradation for small (64x64) matrices, probably due to the cost of more O(min(m,n)^2) sqrt operations that are not needed for the unstable formula.
2016-01-28 15:07:26 -08:00

237 lines
8.8 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/QR>
template<typename MatrixType> void qr()
{
typedef typename MatrixType::Index Index;
Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
MatrixType m1;
createRandomPIMatrixOfRank(rank,rows,cols,m1);
ColPivHouseholderQR<MatrixType> qr(m1);
VERIFY_IS_EQUAL(rank, qr.rank());
VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
VERIFY(!qr.isInjective());
VERIFY(!qr.isInvertible());
VERIFY(!qr.isSurjective());
MatrixQType q = qr.householderQ();
VERIFY_IS_UNITARY(q);
MatrixType r = qr.matrixQR().template triangularView<Upper>();
MatrixType c = q * r * qr.colsPermutation().inverse();
VERIFY_IS_APPROX(m1, c);
// Verify that the absolute value of the diagonal elements in R are
// non-increasing until they reach the singularity threshold.
RealScalar threshold =
std::sqrt(RealScalar(rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
RealScalar x = (std::abs)(r(i, i));
RealScalar y = (std::abs)(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (test_isApproxOrLessThan(x, y)) {
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << rank
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
MatrixType m2 = MatrixType::Random(cols,cols2);
MatrixType m3 = m1*m2;
m2 = MatrixType::Random(cols,cols2);
m2 = qr.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
}
template<typename MatrixType, int Cols2> void qr_fixedsize()
{
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
Matrix<Scalar,Rows,Cols> m1;
createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
VERIFY_IS_EQUAL(rank, qr.rank());
VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel());
VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows));
VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols));
VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective()));
Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>();
Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse();
VERIFY_IS_APPROX(m1, c);
Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
m2 = qr.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
// Verify that the absolute value of the diagonal elements in R are
// non-increasing until they reache the singularity threshold.
RealScalar threshold =
std::sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
RealScalar x = (std::abs)(r(i, i));
RealScalar y = (std::abs)(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (test_isApproxOrLessThan(x, y)) {
for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << rank
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
}
// This test is meant to verify that pivots are chosen such that
// even for a graded matrix, the diagonal of R falls of roughly
// monotonically until it reaches the threshold for singularity.
// We use the so-called Kahan matrix, which is a famous counter-example
// for rank-revealing QR. See
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
// page 3 for more detail.
template<typename MatrixType> void qr_kahan_matrix()
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index rows = 300, cols = rows;
MatrixType m1;
m1.setZero(rows,cols);
RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows);
RealScalar c = std::sqrt(1 - s*s);
for (Index i = 0; i < rows; ++i) {
m1(i, i) = pow(s, i);
m1.row(i).tail(rows - i - 1) = -pow(s, i) * c * MatrixType::Ones(1, rows - i - 1);
}
m1 = (m1 + m1.transpose()).eval();
ColPivHouseholderQR<MatrixType> qr(m1);
MatrixType r = qr.matrixQR().template triangularView<Upper>();
RealScalar threshold =
std::sqrt(RealScalar(rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
RealScalar x = (std::abs)(r(i, i));
RealScalar y = (std::abs)(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (test_isApproxOrLessThan(x, y)) {
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << qr.rank()
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
}
template<typename MatrixType> void qr_invertible()
{
using std::log;
using std::abs;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Scalar Scalar;
int size = internal::random<int>(10,50);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = MatrixType::Random(size,size);
if (internal::is_same<RealScalar,float>::value)
{
// let's build a matrix more stable to inverse
MatrixType a = MatrixType::Random(size,size*2);
m1 += a * a.adjoint();
}
ColPivHouseholderQR<MatrixType> qr(m1);
m3 = MatrixType::Random(size,size);
m2 = qr.solve(m3);
//VERIFY_IS_APPROX(m3, m1*m2);
// now construct a matrix with prescribed determinant
m1.setZero();
for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
RealScalar absdet = abs(m1.diagonal().prod());
m3 = qr.householderQ(); // get a unitary
m1 = m3 * m1 * m3;
qr.compute(m1);
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
}
template<typename MatrixType> void qr_verify_assert()
{
MatrixType tmp;
ColPivHouseholderQR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.matrixQR())
VERIFY_RAISES_ASSERT(qr.solve(tmp))
VERIFY_RAISES_ASSERT(qr.householderQ())
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
VERIFY_RAISES_ASSERT(qr.isInjective())
VERIFY_RAISES_ASSERT(qr.isSurjective())
VERIFY_RAISES_ASSERT(qr.isInvertible())
VERIFY_RAISES_ASSERT(qr.inverse())
VERIFY_RAISES_ASSERT(qr.absDeterminant())
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
}
void test_qr_colpivoting()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr<MatrixXf>() );
CALL_SUBTEST_2( qr<MatrixXd>() );
CALL_SUBTEST_3( qr<MatrixXcd>() );
CALL_SUBTEST_4(( qr_fixedsize<Matrix<float,3,5>, 4 >() ));
CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,6,2>, 3 >() ));
CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() ));
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr_kahan_matrix<MatrixXf>() );
CALL_SUBTEST_2( qr_kahan_matrix<MatrixXd>() );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
CALL_SUBTEST_6( qr_invertible<MatrixXcf>() );
CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
}
CALL_SUBTEST_7(qr_verify_assert<Matrix3f>());
CALL_SUBTEST_8(qr_verify_assert<Matrix3d>());
CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>());
CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
// Test problem size constructors
CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20));
}