mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
191 lines
5.2 KiB
C++
191 lines
5.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com and
|
|
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
using Eigen::array;
|
|
|
|
template <int DataLayout>
|
|
static void test_simple_reverse()
|
|
{
|
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
|
tensor.setRandom();
|
|
|
|
array<bool, 4> dim_rev;
|
|
dim_rev[0] = false;
|
|
dim_rev[1] = true;
|
|
dim_rev[2] = true;
|
|
dim_rev[3] = false;
|
|
|
|
Tensor<float, 4, DataLayout> reversed_tensor;
|
|
reversed_tensor = tensor.reverse(dim_rev);
|
|
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(i,2-j,4-k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
dim_rev[0] = true;
|
|
dim_rev[1] = false;
|
|
dim_rev[2] = false;
|
|
dim_rev[3] = false;
|
|
|
|
reversed_tensor = tensor.reverse(dim_rev);
|
|
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
|
|
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
dim_rev[0] = true;
|
|
dim_rev[1] = false;
|
|
dim_rev[2] = false;
|
|
dim_rev[3] = true;
|
|
|
|
reversed_tensor = tensor.reverse(dim_rev);
|
|
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
|
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
|
|
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,6-l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <int DataLayout>
|
|
static void test_expr_reverse(bool LValue)
|
|
{
|
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
|
tensor.setRandom();
|
|
|
|
array<bool, 4> dim_rev;
|
|
dim_rev[0] = false;
|
|
dim_rev[1] = true;
|
|
dim_rev[2] = false;
|
|
dim_rev[3] = true;
|
|
|
|
Tensor<float, 4, DataLayout> expected(2, 3, 5, 7);
|
|
if (LValue) {
|
|
expected.reverse(dim_rev) = tensor;
|
|
} else {
|
|
expected = tensor.reverse(dim_rev);
|
|
}
|
|
|
|
Tensor<float, 4, DataLayout> result(2,3,5,7);
|
|
|
|
array<ptrdiff_t, 4> src_slice_dim;
|
|
src_slice_dim[0] = 2;
|
|
src_slice_dim[1] = 3;
|
|
src_slice_dim[2] = 1;
|
|
src_slice_dim[3] = 7;
|
|
array<ptrdiff_t, 4> src_slice_start;
|
|
src_slice_start[0] = 0;
|
|
src_slice_start[1] = 0;
|
|
src_slice_start[2] = 0;
|
|
src_slice_start[3] = 0;
|
|
array<ptrdiff_t, 4> dst_slice_dim = src_slice_dim;
|
|
array<ptrdiff_t, 4> dst_slice_start = src_slice_start;
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
if (LValue) {
|
|
result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) =
|
|
tensor.slice(src_slice_start, src_slice_dim);
|
|
} else {
|
|
result.slice(dst_slice_start, dst_slice_dim) =
|
|
tensor.slice(src_slice_start, src_slice_dim).reverse(dim_rev);
|
|
}
|
|
src_slice_start[2] += 1;
|
|
dst_slice_start[2] += 1;
|
|
}
|
|
|
|
VERIFY_IS_EQUAL(result.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(result.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(result.dimension(2), 5);
|
|
VERIFY_IS_EQUAL(result.dimension(3), 7);
|
|
|
|
for (int i = 0; i < expected.dimension(0); ++i) {
|
|
for (int j = 0; j < expected.dimension(1); ++j) {
|
|
for (int k = 0; k < expected.dimension(2); ++k) {
|
|
for (int l = 0; l < expected.dimension(3); ++l) {
|
|
VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
dst_slice_start[2] = 0;
|
|
result.setRandom();
|
|
for (int i = 0; i < 5; ++i) {
|
|
if (LValue) {
|
|
result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) =
|
|
tensor.slice(dst_slice_start, dst_slice_dim);
|
|
} else {
|
|
result.slice(dst_slice_start, dst_slice_dim) =
|
|
tensor.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim);
|
|
}
|
|
dst_slice_start[2] += 1;
|
|
}
|
|
|
|
for (int i = 0; i < expected.dimension(0); ++i) {
|
|
for (int j = 0; j < expected.dimension(1); ++j) {
|
|
for (int k = 0; k < expected.dimension(2); ++k) {
|
|
for (int l = 0; l < expected.dimension(3); ++l) {
|
|
VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_reverse)
|
|
{
|
|
CALL_SUBTEST(test_simple_reverse<ColMajor>());
|
|
CALL_SUBTEST(test_simple_reverse<RowMajor>());
|
|
CALL_SUBTEST(test_expr_reverse<ColMajor>(true));
|
|
CALL_SUBTEST(test_expr_reverse<RowMajor>(true));
|
|
CALL_SUBTEST(test_expr_reverse<ColMajor>(false));
|
|
CALL_SUBTEST(test_expr_reverse<RowMajor>(false));
|
|
}
|