mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
92 lines
2.2 KiB
C++
92 lines
2.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
struct Generator1D {
|
|
Generator1D() { }
|
|
|
|
float operator()(const array<Eigen::DenseIndex, 1>& coordinates) const {
|
|
return coordinates[0];
|
|
}
|
|
};
|
|
|
|
template <int DataLayout>
|
|
static void test_1D()
|
|
{
|
|
Tensor<float, 1> vec(6);
|
|
Tensor<float, 1> result = vec.generate(Generator1D());
|
|
|
|
for (int i = 0; i < 6; ++i) {
|
|
VERIFY_IS_EQUAL(result(i), i);
|
|
}
|
|
}
|
|
|
|
|
|
struct Generator2D {
|
|
Generator2D() { }
|
|
|
|
float operator()(const array<Eigen::DenseIndex, 2>& coordinates) const {
|
|
return 3 * coordinates[0] + 11 * coordinates[1];
|
|
}
|
|
};
|
|
|
|
template <int DataLayout>
|
|
static void test_2D()
|
|
{
|
|
Tensor<float, 2> matrix(512, 512);
|
|
Tensor<float, 2> result = matrix.generate(Generator2D());
|
|
|
|
for (int i = 0; i < 512; ++i) {
|
|
for (int j = 0; j < 512; ++j) {
|
|
VERIFY_IS_EQUAL(result(i, j), 3*i + 11*j);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <int DataLayout>
|
|
static void test_gaussian()
|
|
{
|
|
int rows = 32;
|
|
int cols = 48;
|
|
array<float, 2> means;
|
|
means[0] = rows / 2.0f;
|
|
means[1] = cols / 2.0f;
|
|
array<float, 2> std_devs;
|
|
std_devs[0] = 3.14f;
|
|
std_devs[1] = 2.7f;
|
|
internal::GaussianGenerator<float, Eigen::DenseIndex, 2> gaussian_gen(means, std_devs);
|
|
|
|
Tensor<float, 2> matrix(rows, cols);
|
|
Tensor<float, 2> result = matrix.generate(gaussian_gen);
|
|
|
|
for (int i = 0; i < rows; ++i) {
|
|
for (int j = 0; j < cols; ++j) {
|
|
float g_rows = powf(rows/2.0f - i, 2) / (3.14f * 3.14f) * 0.5f;
|
|
float g_cols = powf(cols/2.0f - j, 2) / (2.7f * 2.7f) * 0.5f;
|
|
float gaussian = expf(-g_rows - g_cols);
|
|
VERIFY_IS_EQUAL(result(i, j), gaussian);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_generator)
|
|
{
|
|
CALL_SUBTEST(test_1D<ColMajor>());
|
|
CALL_SUBTEST(test_1D<RowMajor>());
|
|
CALL_SUBTEST(test_2D<ColMajor>());
|
|
CALL_SUBTEST(test_2D<RowMajor>());
|
|
CALL_SUBTEST(test_gaussian<ColMajor>());
|
|
CALL_SUBTEST(test_gaussian<RowMajor>());
|
|
}
|