2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-01-06 14:14:46 +08:00
eigen/test/determinant.cpp
Gael Guennebaud 522e24f2d7 update of the testing framework:
replaced the QTestLib framework my custom macros
and a (optional) custom script to run the tests from ctest.
2008-05-22 12:18:55 +00:00

79 lines
3.0 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/LU>
template<typename MatrixType> void nullDeterminant(const MatrixType& m)
{
/* this test covers the following files:
Determinant.h
*/
int rows = m.rows();
int cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
MatrixType dinv(rows, cols), dnotinv(rows, cols);
dinv.col(0).setOnes();
dinv.block(0,1, rows, cols-2).setRandom();
dnotinv.col(0).setOnes();
dnotinv.block(0,1, rows, cols-2).setRandom();
dnotinv.col(cols-1).setOnes();
for (int i=0 ; i<rows ; ++i)
{
dnotinv.row(i).block(0,1,1,cols-2) = ei_random<Scalar>(99.999999,100.00000001)*dnotinv.row(i).block(0,1,1,cols-2).normalized();
dnotinv(i,cols-1) = dnotinv.row(i).block(0,1,1,cols-2).norm2();
dinv(i,cols-1) = dinv.row(i).block(0,1,1,cols-2).norm2();
}
SquareMatrixType invertibleCovarianceMatrix = dinv.transpose() * dinv;
SquareMatrixType notInvertibleCovarianceMatrix = dnotinv.transpose() * dnotinv;
std::cout << notInvertibleCovarianceMatrix << "\n" << notInvertibleCovarianceMatrix.determinant() << "\n";
VERIFY_IS_MUCH_SMALLER_THAN(notInvertibleCovarianceMatrix.determinant(),
notInvertibleCovarianceMatrix.cwiseAbs().maxCoeff());
VERIFY(invertibleCovarianceMatrix.inverse().exists());
VERIFY(!notInvertibleCovarianceMatrix.inverse().exists());
}
void test_determinant()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( nullDeterminant(Matrix<float, 30, 3>()) );
CALL_SUBTEST( nullDeterminant(Matrix<double, 30, 3>()) );
CALL_SUBTEST( nullDeterminant(Matrix<float, 20, 4>()) );
CALL_SUBTEST( nullDeterminant(Matrix<double, 20, 4>()) );
// CALL_SUBTEST( nullDeterminant(MatrixXd(20,4));
}
}