mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
027818d739
* added complete implementation of sparse matrix product (with a little glue in Eigen/Core) * added an exhaustive bench of sparse products including GMM++ and MTL4 => Eigen outperforms in all transposed/density configurations !
62 lines
2.3 KiB
C++
62 lines
2.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Cholesky>
|
|
#include <Eigen/LU>
|
|
|
|
template<typename MatrixType> void cholesky(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
Cholesky.h CholeskyWithoutSquareRoot.h
|
|
*/
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
MatrixType a = MatrixType::random(rows,cols);
|
|
VectorType b = VectorType::random(rows);
|
|
SquareMatrixType covMat = a * a.adjoint();
|
|
|
|
CholeskyWithoutSquareRoot<SquareMatrixType> cholnosqrt(covMat);
|
|
VERIFY_IS_APPROX(covMat, cholnosqrt.matrixL() * cholnosqrt.vectorD().asDiagonal() * cholnosqrt.matrixL().adjoint());
|
|
VERIFY_IS_APPROX(covMat * cholnosqrt.solve(b), b);
|
|
|
|
Cholesky<SquareMatrixType> chol(covMat);
|
|
VERIFY_IS_APPROX(covMat, chol.matrixL() * chol.matrixL().adjoint());
|
|
VERIFY_IS_APPROX(covMat * chol.solve(b), b);
|
|
}
|
|
|
|
void test_cholesky()
|
|
{
|
|
for(int i = 0; i < 1; i++) {
|
|
CALL_SUBTEST( cholesky(Matrix3f()) );
|
|
CALL_SUBTEST( cholesky(Matrix4d()) );
|
|
CALL_SUBTEST( cholesky(MatrixXcd(7,7)) );
|
|
}
|
|
}
|