mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
102 lines
3.3 KiB
C++
102 lines
3.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Array>
|
|
|
|
template<typename MatrixType> void scalarAdd(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
Array.cpp
|
|
*/
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::random(rows, cols),
|
|
m2 = MatrixType::random(rows, cols),
|
|
m3(rows, cols);
|
|
|
|
Scalar s1 = ei_random<Scalar>(),
|
|
s2 = ei_random<Scalar>();
|
|
|
|
VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
|
|
VERIFY_IS_APPROX(m1.array() + s1, MatrixType::constant(rows,cols,s1) + m1);
|
|
VERIFY_IS_APPROX((m1*Scalar(2)).array() - s2, (m1+m1) - MatrixType::constant(rows,cols,s2) );
|
|
m3 = m1;
|
|
m3.array() += s2;
|
|
VERIFY_IS_APPROX(m3, m1.array() + s2);
|
|
m3 = m1;
|
|
m3.array() -= s1;
|
|
VERIFY_IS_APPROX(m3, m1.array() - s1);
|
|
}
|
|
|
|
template<typename MatrixType> void comparisons(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
int r = ei_random<int>(0, rows-1),
|
|
c = ei_random<int>(0, cols-1);
|
|
|
|
MatrixType m1 = MatrixType::random(rows, cols),
|
|
m2 = MatrixType::random(rows, cols),
|
|
m3(rows, cols);
|
|
|
|
VERIFY((m1.array() + Scalar(1)).array() > m1.array());
|
|
VERIFY((m1.array() - Scalar(1)).array() < m1.array());
|
|
if (rows*cols>1)
|
|
{
|
|
m3 = m1;
|
|
m3(r,c) += 1;
|
|
VERIFY(! (m1.array() < m3.array()) );
|
|
VERIFY(! (m1.array() > m3.array()) );
|
|
}
|
|
}
|
|
|
|
void test_array()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( scalarAdd(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST( scalarAdd(Matrix2f()) );
|
|
CALL_SUBTEST( scalarAdd(Matrix4d()) );
|
|
CALL_SUBTEST( scalarAdd(MatrixXcf(3, 3)) );
|
|
CALL_SUBTEST( scalarAdd(MatrixXf(8, 12)) );
|
|
CALL_SUBTEST( scalarAdd(MatrixXi(8, 12)) );
|
|
}
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( comparisons(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST( comparisons(Matrix2f()) );
|
|
CALL_SUBTEST( comparisons(Matrix4d()) );
|
|
CALL_SUBTEST( comparisons(MatrixXf(8, 12)) );
|
|
CALL_SUBTEST( comparisons(MatrixXi(8, 12)) );
|
|
}
|
|
}
|