mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
75 lines
2.5 KiB
C++
75 lines
2.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Geometry>
|
|
|
|
template<typename Scalar> void geometry(void)
|
|
{
|
|
/* this test covers the following files:
|
|
Cross.h Quaternion.h
|
|
*/
|
|
|
|
typedef Matrix<Scalar,3,3> Matrix3;
|
|
typedef Matrix<Scalar,4,4> Matrix4;
|
|
typedef Matrix<Scalar,3,1> Vector3;
|
|
typedef Matrix<Scalar,4,1> Vector4;
|
|
typedef Quaternion<Scalar> Quaternion;
|
|
|
|
Quaternion q1, q2, q3;
|
|
Vector3 v0 = Vector3::random(),
|
|
v1 = Vector3::random(),
|
|
v2 = Vector3::random();
|
|
|
|
q1.fromAngleAxis(ei_random<Scalar>(-M_PI, M_PI), v0.normalized());
|
|
q2.fromAngleAxis(ei_random<Scalar>(-M_PI, M_PI), v1.normalized());
|
|
|
|
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
|
|
VERIFY_IS_APPROX(q1 * q2 * v2,
|
|
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
|
|
VERIFY_IS_NOT_APPROX(q2 * q1 * v2,
|
|
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
|
|
|
|
q2.fromRotationMatrix(q1.toRotationMatrix());
|
|
VERIFY_IS_APPROX(q1*v1,q2*v1);
|
|
|
|
VERIFY_IS_APPROX(v2.normalized(),(q2.fromTwoVectors(v1,v2)*v1).normalized());
|
|
|
|
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1));
|
|
|
|
Matrix3 m;
|
|
m << v0.normalized(),
|
|
(v0.cross(v1)).normalized(),
|
|
(v0.cross(v1).cross(v0)).normalized();
|
|
VERIFY(m.isOrtho());
|
|
}
|
|
|
|
void test_geometry()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
// CALL_SUBTEST( geometry<float>() );
|
|
CALL_SUBTEST( geometry<double>() );
|
|
}
|
|
}
|