eigen/unsupported/test/cxx11_tensor_expr.cpp
2014-06-05 10:49:34 -07:00

265 lines
6.5 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
using Eigen::RowMajor;
static void test_1d()
{
Tensor<float, 1> vec1({6});
Tensor<float, 1, RowMajor> vec2({6});
vec1(0) = 4.0; vec2(0) = 0.0;
vec1(1) = 8.0; vec2(1) = 1.0;
vec1(2) = 15.0; vec2(2) = 2.0;
vec1(3) = 16.0; vec2(3) = 3.0;
vec1(4) = 23.0; vec2(4) = 4.0;
vec1(5) = 42.0; vec2(5) = 5.0;
float data3[6];
TensorMap<Tensor<float, 1>> vec3(data3, 6);
vec3 = vec1.sqrt();
float data4[6];
TensorMap<Tensor<float, 1, RowMajor>> vec4(data4, 6);
vec4 = vec2.square();
VERIFY_IS_APPROX(vec3(0), sqrtf(4.0));
VERIFY_IS_APPROX(vec3(1), sqrtf(8.0));
VERIFY_IS_APPROX(vec3(2), sqrtf(15.0));
VERIFY_IS_APPROX(vec3(3), sqrtf(16.0));
VERIFY_IS_APPROX(vec3(4), sqrtf(23.0));
VERIFY_IS_APPROX(vec3(5), sqrtf(42.0));
VERIFY_IS_APPROX(vec4(0), 0.0f);
VERIFY_IS_APPROX(vec4(1), 1.0f);
VERIFY_IS_APPROX(vec4(2), 2.0f * 2.0f);
VERIFY_IS_APPROX(vec4(3), 3.0f * 3.0f);
VERIFY_IS_APPROX(vec4(4), 4.0f * 4.0f);
VERIFY_IS_APPROX(vec4(5), 5.0f * 5.0f);
vec3 = vec1 + vec2;
VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f);
VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f);
VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f);
VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f);
VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f);
VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f);
}
static void test_2d()
{
float data1[6];
TensorMap<Tensor<float, 2>> mat1(data1, 2, 3);
float data2[6];
TensorMap<Tensor<float, 2, RowMajor>> mat2(data2, 2, 3);
mat1(0,0) = 0.0;
mat1(0,1) = 1.0;
mat1(0,2) = 2.0;
mat1(1,0) = 3.0;
mat1(1,1) = 4.0;
mat1(1,2) = 5.0;
mat2(0,0) = -0.0;
mat2(0,1) = -1.0;
mat2(0,2) = -2.0;
mat2(1,0) = -3.0;
mat2(1,1) = -4.0;
mat2(1,2) = -5.0;
Tensor<float, 2> mat3(2,3);
Tensor<float, 2, RowMajor> mat4(2,3);
mat3 = mat1.abs();
mat4 = mat2.abs();
VERIFY_IS_APPROX(mat3(0,0), 0.0f);
VERIFY_IS_APPROX(mat3(0,1), 1.0f);
VERIFY_IS_APPROX(mat3(0,2), 2.0f);
VERIFY_IS_APPROX(mat3(1,0), 3.0f);
VERIFY_IS_APPROX(mat3(1,1), 4.0f);
VERIFY_IS_APPROX(mat3(1,2), 5.0f);
VERIFY_IS_APPROX(mat4(0,0), 0.0f);
VERIFY_IS_APPROX(mat4(0,1), 1.0f);
VERIFY_IS_APPROX(mat4(0,2), 2.0f);
VERIFY_IS_APPROX(mat4(1,0), 3.0f);
VERIFY_IS_APPROX(mat4(1,1), 4.0f);
VERIFY_IS_APPROX(mat4(1,2), 5.0f);
}
static void test_3d()
{
Tensor<float, 3> mat1(2,3,7);
Tensor<float, 3, RowMajor> mat2(2,3,7);
float val = 1.0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
mat1(i,j,k) = val;
mat2(i,j,k) = val;
val += 1.0;
}
}
}
Tensor<float, 3> mat3(2,3,7);
mat3 = mat1 + mat1;
Tensor<float, 3, RowMajor> mat4(2,3,7);
mat4 = mat2 * 3.14f;
Tensor<float, 3> mat5(2,3,7);
mat5 = mat1.inverse().log();
Tensor<float, 3, RowMajor> mat6(2,3,7);
mat6 = mat2.pow(0.5f) * 3.14f;
Tensor<float, 3> mat7(2,3,7);
mat7 = mat1.cwiseMax(mat5 * 2.0f).exp();
Tensor<float, 3, RowMajor> mat8(2,3,7);
mat8 = (-mat2).exp() * 3.14f;
val = 1.0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(mat3(i,j,k), val + val);
VERIFY_IS_APPROX(mat4(i,j,k), val * 3.14f);
VERIFY_IS_APPROX(mat5(i,j,k), logf(1.0f/val));
VERIFY_IS_APPROX(mat6(i,j,k), sqrtf(val) * 3.14f);
VERIFY_IS_APPROX(mat7(i,j,k), expf((std::max)(val, mat5(i,j,k) * 2.0f)));
VERIFY_IS_APPROX(mat8(i,j,k), expf(-val) * 3.14f);
val += 1.0;
}
}
}
}
static void test_constants()
{
Tensor<float, 3> mat1(2,3,7);
Tensor<float, 3> mat2(2,3,7);
Tensor<float, 3> mat3(2,3,7);
float val = 1.0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
mat1(i,j,k) = val;
val += 1.0;
}
}
}
mat2 = mat1.constant(3.14f);
mat3 = mat1.cwiseMax(7.3f).exp();
val = 1.0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(mat2(i,j,k), 3.14f);
VERIFY_IS_APPROX(mat3(i,j,k), expf((std::max)(val, 7.3f)));
val += 1.0;
}
}
}
}
static void test_functors()
{
Tensor<float, 3> mat1(2,3,7);
Tensor<float, 3> mat2(2,3,7);
Tensor<float, 3> mat3(2,3,7);
float val = 1.0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
mat1(i,j,k) = val;
val += 1.0;
}
}
}
mat2 = mat1.inverse().unaryExpr(&asinf);
mat3 = mat1.unaryExpr(&tanhf);
val = 1.0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(mat2(i,j,k), asinf(1.0f / mat1(i,j,k)));
VERIFY_IS_APPROX(mat3(i,j,k), tanhf(mat1(i,j,k)));
val += 1.0;
}
}
}
}
static void test_type_casting()
{
Tensor<bool, 3> mat1(2,3,7);
Tensor<float, 3> mat2(2,3,7);
Tensor<double, 3> mat3(2,3,7);
mat1.setRandom();
mat2.setRandom();
mat3 = mat1.template cast<double>();
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(mat3(i,j,k), mat1(i,j,k) ? 1.0 : 0.0);
}
}
}
mat3 = mat2.template cast<double>();
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(mat3(i,j,k), static_cast<double>(mat2(i,j,k)));
}
}
}
}
static void test_select()
{
Tensor<float, 3> selector(2,3,7);
Tensor<float, 3> mat1(2,3,7);
Tensor<float, 3> mat2(2,3,7);
Tensor<float, 3> result(2,3,7);
selector.setRandom();
mat1.setRandom();
mat2.setRandom();
result = (selector > selector.constant(0.5f)).select(mat1, mat2);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(result(i,j,k), (selector(i,j,k) > 0.5f) ? mat1(i,j,k) : mat2(i,j,k));
}
}
}
}
void test_cxx11_tensor_expr()
{
CALL_SUBTEST(test_1d());
CALL_SUBTEST(test_2d());
CALL_SUBTEST(test_3d());
CALL_SUBTEST(test_constants());
CALL_SUBTEST(test_functors());
CALL_SUBTEST(test_type_casting());
CALL_SUBTEST(test_select());
}