mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
97 lines
3.4 KiB
C++
97 lines
3.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/SVD>
|
|
|
|
template<typename MatrixType, typename JacobiScalar>
|
|
void jacobi(const MatrixType& m = MatrixType())
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::Index Index;
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
|
};
|
|
|
|
typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
|
|
|
|
const MatrixType a(MatrixType::Random(rows, cols));
|
|
|
|
JacobiVector v = JacobiVector::Random().normalized();
|
|
JacobiScalar c = v.x(), s = v.y();
|
|
JacobiRotation<JacobiScalar> rot(c, s);
|
|
|
|
{
|
|
Index p = internal::random<Index>(0, rows-1);
|
|
Index q;
|
|
do {
|
|
q = internal::random<Index>(0, rows-1);
|
|
} while (q == p);
|
|
|
|
MatrixType b = a;
|
|
b.applyOnTheLeft(p, q, rot);
|
|
VERIFY_IS_APPROX(b.row(p), c * a.row(p) + internal::conj(s) * a.row(q));
|
|
VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + internal::conj(c) * a.row(q));
|
|
}
|
|
|
|
{
|
|
Index p = internal::random<Index>(0, cols-1);
|
|
Index q;
|
|
do {
|
|
q = internal::random<Index>(0, cols-1);
|
|
} while (q == p);
|
|
|
|
MatrixType b = a;
|
|
b.applyOnTheRight(p, q, rot);
|
|
VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
|
|
VERIFY_IS_APPROX(b.col(q), internal::conj(s) * a.col(p) + internal::conj(c) * a.col(q));
|
|
}
|
|
}
|
|
|
|
void test_jacobi()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(( jacobi<Matrix3f, float>() ));
|
|
CALL_SUBTEST_2(( jacobi<Matrix4d, double>() ));
|
|
CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() ));
|
|
CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
|
|
|
|
int r = internal::random<int>(2, 20),
|
|
c = internal::random<int>(2, 20);
|
|
CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) ));
|
|
CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) ));
|
|
CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) ));
|
|
// complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
|
|
CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) ));
|
|
CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) ));
|
|
(void) r;
|
|
(void) c;
|
|
}
|
|
}
|