mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
75 lines
2.5 KiB
C++
75 lines
2.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
#define EIGEN_TEST_FUNC cxx11_tensor_broadcast_sycl
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::array;
|
|
using Eigen::SyclDevice;
|
|
using Eigen::Tensor;
|
|
using Eigen::TensorMap;
|
|
|
|
static void test_broadcast_sycl(const Eigen::SyclDevice &sycl_device){
|
|
|
|
// BROADCAST test:
|
|
array<int, 4> in_range = {{2, 3, 5, 7}};
|
|
array<int, 4> broadcasts = {{2, 3, 1, 4}};
|
|
array<int, 4> out_range; // = in_range * broadcasts
|
|
for (size_t i = 0; i < out_range.size(); ++i)
|
|
out_range[i] = in_range[i] * broadcasts[i];
|
|
|
|
Tensor<float, 4> input(in_range);
|
|
Tensor<float, 4> out(out_range);
|
|
|
|
for (size_t i = 0; i < in_range.size(); ++i)
|
|
VERIFY_IS_EQUAL(out.dimension(i), out_range[i]);
|
|
|
|
|
|
for (int i = 0; i < input.size(); ++i)
|
|
input(i) = static_cast<float>(i);
|
|
|
|
float * gpu_in_data = static_cast<float*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(float)));
|
|
float * gpu_out_data = static_cast<float*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(float)));
|
|
|
|
TensorMap<Tensor<float, 4>> gpu_in(gpu_in_data, in_range);
|
|
TensorMap<Tensor<float, 4>> gpu_out(gpu_out_data, out_range);
|
|
sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(float));
|
|
gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts);
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
for (int j = 0; j < 9; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 28; ++l) {
|
|
VERIFY_IS_APPROX(input(i%2,j%3,k%5,l%7), out(i,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
printf("Broadcast Test Passed\n");
|
|
sycl_device.deallocate(gpu_in_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
}
|
|
|
|
void test_cxx11_tensor_broadcast_sycl() {
|
|
cl::sycl::gpu_selector s;
|
|
Eigen::SyclDevice sycl_device(s);
|
|
CALL_SUBTEST(test_broadcast_sycl(sycl_device));
|
|
}
|