mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
9962c59b56
* get rid of BlockReturnType: it was not needed, and code was not always using it consistently anyway * add topRows(), leftCols(), bottomRows(), rightCols() * add corners unit-test covering all of that * adapt docs, expand "porting from eigen 2 to 3" * adapt Eigen2Support
549 lines
18 KiB
C++
549 lines
18 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include <cstdlib>
|
|
#include <cerrno>
|
|
#include <ctime>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <typeinfo>
|
|
|
|
#ifdef NDEBUG
|
|
#undef NDEBUG
|
|
#endif
|
|
|
|
#ifndef EIGEN_TEST_FUNC
|
|
#error EIGEN_TEST_FUNC must be defined
|
|
#endif
|
|
|
|
#define DEFAULT_REPEAT 10
|
|
|
|
#ifdef __ICC
|
|
// disable warning #279: controlling expression is constant
|
|
#pragma warning disable 279
|
|
#endif
|
|
|
|
namespace Eigen
|
|
{
|
|
static std::vector<std::string> g_test_stack;
|
|
static int g_repeat;
|
|
static unsigned int g_seed;
|
|
static bool g_has_set_repeat, g_has_set_seed;
|
|
}
|
|
|
|
#define EI_PP_MAKE_STRING2(S) #S
|
|
#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
|
|
|
|
#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "")
|
|
|
|
#ifndef EIGEN_NO_ASSERTION_CHECKING
|
|
|
|
namespace Eigen
|
|
{
|
|
static const bool should_raise_an_assert = false;
|
|
|
|
// Used to avoid to raise two exceptions at a time in which
|
|
// case the exception is not properly caught.
|
|
// This may happen when a second exceptions is raise in a destructor.
|
|
static bool no_more_assert = false;
|
|
|
|
struct ei_assert_exception
|
|
{
|
|
ei_assert_exception(void) {}
|
|
~ei_assert_exception() { Eigen::no_more_assert = false; }
|
|
};
|
|
}
|
|
|
|
// If EIGEN_DEBUG_ASSERTS is defined and if no assertion is raised while
|
|
// one should have been, then the list of excecuted assertions is printed out.
|
|
//
|
|
// EIGEN_DEBUG_ASSERTS is not enabled by default as it
|
|
// significantly increases the compilation time
|
|
// and might even introduce side effects that would hide
|
|
// some memory errors.
|
|
#ifdef EIGEN_DEBUG_ASSERTS
|
|
|
|
namespace Eigen
|
|
{
|
|
static bool ei_push_assert = false;
|
|
static std::vector<std::string> ei_assert_list;
|
|
}
|
|
|
|
#define ei_assert(a) \
|
|
if( (!(a)) && (!no_more_assert) ) \
|
|
{ \
|
|
std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
|
|
Eigen::no_more_assert = true; \
|
|
throw Eigen::ei_assert_exception(); \
|
|
} \
|
|
else if (Eigen::ei_push_assert) \
|
|
{ \
|
|
ei_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__)" ("EI_PP_MAKE_STRING(__LINE__)") : "#a) ); \
|
|
}
|
|
|
|
#define VERIFY_RAISES_ASSERT(a) \
|
|
{ \
|
|
Eigen::no_more_assert = false; \
|
|
try { \
|
|
Eigen::ei_assert_list.clear(); \
|
|
Eigen::ei_push_assert = true; \
|
|
a; \
|
|
Eigen::ei_push_assert = false; \
|
|
std::cerr << "One of the following asserts should have been raised:\n"; \
|
|
for (uint ai=0 ; ai<ei_assert_list.size() ; ++ai) \
|
|
std::cerr << " " << ei_assert_list[ai] << "\n"; \
|
|
VERIFY(Eigen::should_raise_an_assert && # a); \
|
|
} catch (Eigen::ei_assert_exception e) { \
|
|
Eigen::ei_push_assert = false; VERIFY(true); \
|
|
} \
|
|
}
|
|
|
|
#else // EIGEN_DEBUG_ASSERTS
|
|
|
|
#define ei_assert(a) \
|
|
if( (!(a)) && (!no_more_assert) ) \
|
|
{ \
|
|
Eigen::no_more_assert = true; \
|
|
std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
|
|
throw Eigen::ei_assert_exception(); \
|
|
}
|
|
|
|
#define VERIFY_RAISES_ASSERT(a) { \
|
|
Eigen::no_more_assert = false; \
|
|
try { a; VERIFY(Eigen::should_raise_an_assert && # a); } \
|
|
catch (Eigen::ei_assert_exception e) { VERIFY(true); } \
|
|
}
|
|
|
|
#endif // EIGEN_DEBUG_ASSERTS
|
|
|
|
#define EIGEN_USE_CUSTOM_ASSERT
|
|
|
|
#else // EIGEN_NO_ASSERTION_CHECKING
|
|
|
|
#define VERIFY_RAISES_ASSERT(a) {}
|
|
|
|
#endif // EIGEN_NO_ASSERTION_CHECKING
|
|
|
|
|
|
#define EIGEN_INTERNAL_DEBUGGING
|
|
#define EIGEN_NICE_RANDOM
|
|
#include <Eigen/QR> // required for createRandomPIMatrixOfRank
|
|
|
|
|
|
#define VERIFY(a) do { if (!(a)) { \
|
|
std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__) << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" \
|
|
<< std::endl << " " << EI_PP_MAKE_STRING(a) << std::endl << std::endl; \
|
|
exit(2); \
|
|
} } while (0)
|
|
|
|
#define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b))
|
|
#define VERIFY_IS_APPROX(a, b) VERIFY(test_ei_isApprox(a, b))
|
|
#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_ei_isApprox(a, b))
|
|
#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_ei_isMuchSmallerThan(a, b))
|
|
#define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_ei_isMuchSmallerThan(a, b))
|
|
#define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_ei_isApproxOrLessThan(a, b))
|
|
#define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_ei_isApproxOrLessThan(a, b))
|
|
|
|
#define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
|
|
|
|
#define CALL_SUBTEST(FUNC) do { \
|
|
g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \
|
|
FUNC; \
|
|
g_test_stack.pop_back(); \
|
|
} while (0)
|
|
|
|
#ifdef EIGEN_TEST_PART_1
|
|
#define CALL_SUBTEST_1(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_1(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_2
|
|
#define CALL_SUBTEST_2(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_2(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_3
|
|
#define CALL_SUBTEST_3(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_3(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_4
|
|
#define CALL_SUBTEST_4(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_4(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_5
|
|
#define CALL_SUBTEST_5(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_5(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_6
|
|
#define CALL_SUBTEST_6(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_6(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_7
|
|
#define CALL_SUBTEST_7(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_7(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_8
|
|
#define CALL_SUBTEST_8(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_8(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_9
|
|
#define CALL_SUBTEST_9(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_9(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_10
|
|
#define CALL_SUBTEST_10(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_10(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_11
|
|
#define CALL_SUBTEST_11(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_11(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_12
|
|
#define CALL_SUBTEST_12(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_12(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_13
|
|
#define CALL_SUBTEST_13(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_13(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_14
|
|
#define CALL_SUBTEST_14(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_14(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_15
|
|
#define CALL_SUBTEST_15(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_15(FUNC)
|
|
#endif
|
|
|
|
#ifdef EIGEN_TEST_PART_16
|
|
#define CALL_SUBTEST_16(FUNC) CALL_SUBTEST(FUNC)
|
|
#else
|
|
#define CALL_SUBTEST_16(FUNC)
|
|
#endif
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename T> inline typename NumTraits<T>::Real test_precision();
|
|
template<> inline int test_precision<int>() { return 0; }
|
|
template<> inline float test_precision<float>() { return 1e-3f; }
|
|
template<> inline double test_precision<double>() { return 1e-6; }
|
|
template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
|
|
template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
|
|
template<> inline long double test_precision<long double>() { return 1e-6; }
|
|
|
|
inline bool test_ei_isApprox(const int& a, const int& b)
|
|
{ return ei_isApprox(a, b, test_precision<int>()); }
|
|
inline bool test_ei_isMuchSmallerThan(const int& a, const int& b)
|
|
{ return ei_isMuchSmallerThan(a, b, test_precision<int>()); }
|
|
inline bool test_ei_isApproxOrLessThan(const int& a, const int& b)
|
|
{ return ei_isApproxOrLessThan(a, b, test_precision<int>()); }
|
|
|
|
inline bool test_ei_isApprox(const float& a, const float& b)
|
|
{ return ei_isApprox(a, b, test_precision<float>()); }
|
|
inline bool test_ei_isMuchSmallerThan(const float& a, const float& b)
|
|
{ return ei_isMuchSmallerThan(a, b, test_precision<float>()); }
|
|
inline bool test_ei_isApproxOrLessThan(const float& a, const float& b)
|
|
{ return ei_isApproxOrLessThan(a, b, test_precision<float>()); }
|
|
|
|
inline bool test_ei_isApprox(const double& a, const double& b)
|
|
{ return ei_isApprox(a, b, test_precision<double>()); }
|
|
inline bool test_ei_isMuchSmallerThan(const double& a, const double& b)
|
|
{ return ei_isMuchSmallerThan(a, b, test_precision<double>()); }
|
|
inline bool test_ei_isApproxOrLessThan(const double& a, const double& b)
|
|
{ return ei_isApproxOrLessThan(a, b, test_precision<double>()); }
|
|
|
|
inline bool test_ei_isApprox(const std::complex<float>& a, const std::complex<float>& b)
|
|
{ return ei_isApprox(a, b, test_precision<std::complex<float> >()); }
|
|
inline bool test_ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
|
|
{ return ei_isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
|
|
|
|
inline bool test_ei_isApprox(const std::complex<double>& a, const std::complex<double>& b)
|
|
{ return ei_isApprox(a, b, test_precision<std::complex<double> >()); }
|
|
inline bool test_ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b)
|
|
{ return ei_isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
|
|
|
|
inline bool test_ei_isApprox(const long double& a, const long double& b)
|
|
{ return ei_isApprox(a, b, test_precision<long double>()); }
|
|
inline bool test_ei_isMuchSmallerThan(const long double& a, const long double& b)
|
|
{ return ei_isMuchSmallerThan(a, b, test_precision<long double>()); }
|
|
inline bool test_ei_isApproxOrLessThan(const long double& a, const long double& b)
|
|
{ return ei_isApproxOrLessThan(a, b, test_precision<long double>()); }
|
|
|
|
template<typename Type1, typename Type2>
|
|
inline bool test_ei_isApprox(const Type1& a, const Type2& b)
|
|
{
|
|
return a.isApprox(b, test_precision<typename Type1::Scalar>());
|
|
}
|
|
|
|
template<typename Derived1, typename Derived2>
|
|
inline bool test_ei_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
|
|
const MatrixBase<Derived2>& m2)
|
|
{
|
|
return m1.isMuchSmallerThan(m2, test_precision<typename ei_traits<Derived1>::Scalar>());
|
|
}
|
|
|
|
template<typename Derived>
|
|
inline bool test_ei_isMuchSmallerThan(const MatrixBase<Derived>& m,
|
|
const typename NumTraits<typename ei_traits<Derived>::Scalar>::Real& s)
|
|
{
|
|
return m.isMuchSmallerThan(s, test_precision<typename ei_traits<Derived>::Scalar>());
|
|
}
|
|
|
|
template<typename Derived>
|
|
inline bool test_isUnitary(const MatrixBase<Derived>& m)
|
|
{
|
|
return m.isUnitary(test_precision<typename ei_traits<Derived>::Scalar>());
|
|
}
|
|
|
|
template<typename Derived1, typename Derived2,
|
|
bool IsVector = bool(Derived1::IsVectorAtCompileTime) && bool(Derived2::IsVectorAtCompileTime) >
|
|
struct test_is_equal_impl
|
|
{
|
|
static bool run(const Derived1& a1, const Derived2& a2)
|
|
{
|
|
if(a1.size() == 0 && a2.size() == 0) return true;
|
|
if(a1.size() != a2.size()) return false;
|
|
// we evaluate a2 into a temporary of the shape of a1. this allows to let Assign.h handle the transposing if needed.
|
|
typename Derived1::PlainObject a2_evaluated(a2.size());
|
|
a2_evaluated(0,0) = a2(0,0); // shut up GCC 4.5.0 bogus warning about a2_evaluated's array being used uninitialized in the 1x1 case, see block_1 test
|
|
a2_evaluated = a2;
|
|
for(int i = 0; i < a1.size(); ++i)
|
|
if(a1.coeff(i) != a2_evaluated.coeff(i)) return false;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template<typename Derived1, typename Derived2>
|
|
struct test_is_equal_impl<Derived1, Derived2, false>
|
|
{
|
|
static bool run(const Derived1& a1, const Derived2& a2)
|
|
{
|
|
if(a1.size() == 0 && a2.size() == 0) return true;
|
|
if(a1.rows() != a2.rows()) return false;
|
|
if(a1.cols() != a2.cols()) return false;
|
|
for(int j = 0; j < a1.cols(); ++j)
|
|
for(int i = 0; i < a1.rows(); ++i)
|
|
if(a1.coeff(i,j) != a2.coeff(i,j)) return false;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template<typename Derived1, typename Derived2>
|
|
bool test_is_equal(const Derived1& a1, const Derived2& a2)
|
|
{
|
|
return test_is_equal_impl<Derived1, Derived2>::run(a1, a2);
|
|
}
|
|
|
|
bool test_is_equal(const int actual, const int expected)
|
|
{
|
|
if (actual==expected)
|
|
return true;
|
|
// false:
|
|
std::cerr
|
|
<< std::endl << " actual = " << actual
|
|
<< std::endl << " expected = " << expected << std::endl << std::endl;
|
|
return false;
|
|
}
|
|
|
|
/** Creates a random Partial Isometry matrix of given rank.
|
|
*
|
|
* A partial isometry is a matrix all of whose singular values are either 0 or 1.
|
|
* This is very useful to test rank-revealing algorithms.
|
|
*/
|
|
template<typename MatrixType>
|
|
void createRandomPIMatrixOfRank(int desired_rank, int rows, int cols, MatrixType& m)
|
|
{
|
|
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
|
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
|
|
|
typedef Matrix<Scalar, Dynamic, 1> VectorType;
|
|
typedef Matrix<Scalar, Rows, Rows> MatrixAType;
|
|
typedef Matrix<Scalar, Cols, Cols> MatrixBType;
|
|
|
|
if(desired_rank == 0)
|
|
{
|
|
m.setZero(rows,cols);
|
|
return;
|
|
}
|
|
|
|
if(desired_rank == 1)
|
|
{
|
|
// here we normalize the vectors to get a partial isometry
|
|
m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose();
|
|
return;
|
|
}
|
|
|
|
MatrixAType a = MatrixAType::Random(rows,rows);
|
|
MatrixType d = MatrixType::Identity(rows,cols);
|
|
MatrixBType b = MatrixBType::Random(cols,cols);
|
|
|
|
// set the diagonal such that only desired_rank non-zero entries reamain
|
|
const int diag_size = std::min(d.rows(),d.cols());
|
|
if(diag_size != desired_rank)
|
|
d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
|
|
|
|
HouseholderQR<MatrixAType> qra(a);
|
|
HouseholderQR<MatrixBType> qrb(b);
|
|
m = qra.householderQ() * d * qrb.householderQ();
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
template<typename T> struct GetDifferentType;
|
|
|
|
template<> struct GetDifferentType<float> { typedef double type; };
|
|
template<> struct GetDifferentType<double> { typedef float type; };
|
|
template<typename T> struct GetDifferentType<std::complex<T> >
|
|
{ typedef std::complex<typename GetDifferentType<T>::type> type; };
|
|
|
|
template<typename T> std::string type_name() { return "other"; }
|
|
template<> std::string type_name<float>() { return "float"; }
|
|
template<> std::string type_name<double>() { return "double"; }
|
|
template<> std::string type_name<int>() { return "int"; }
|
|
template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
|
|
template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
|
|
template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
|
|
|
|
// forward declaration of the main test function
|
|
void EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
|
|
|
|
using namespace Eigen;
|
|
|
|
void set_repeat_from_string(const char *str)
|
|
{
|
|
errno = 0;
|
|
g_repeat = int(strtoul(str, 0, 10));
|
|
if(errno || g_repeat <= 0)
|
|
{
|
|
std::cout << "Invalid repeat value " << str << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
g_has_set_repeat = true;
|
|
}
|
|
|
|
void set_seed_from_string(const char *str)
|
|
{
|
|
errno = 0;
|
|
g_seed = strtoul(str, 0, 10);
|
|
if(errno || g_seed == 0)
|
|
{
|
|
std::cout << "Invalid seed value " << str << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
g_has_set_seed = true;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
g_has_set_repeat = false;
|
|
g_has_set_seed = false;
|
|
bool need_help = false;
|
|
|
|
for(int i = 1; i < argc; i++)
|
|
{
|
|
if(argv[i][0] == 'r')
|
|
{
|
|
if(g_has_set_repeat)
|
|
{
|
|
std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
|
|
return 1;
|
|
}
|
|
set_repeat_from_string(argv[i]+1);
|
|
}
|
|
else if(argv[i][0] == 's')
|
|
{
|
|
if(g_has_set_seed)
|
|
{
|
|
std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
|
|
return 1;
|
|
}
|
|
set_seed_from_string(argv[i]+1);
|
|
}
|
|
else
|
|
{
|
|
need_help = true;
|
|
}
|
|
}
|
|
|
|
if(need_help)
|
|
{
|
|
std::cout << "This test application takes the following optional arguments:" << std::endl;
|
|
std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl;
|
|
std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl;
|
|
std::cout << std::endl;
|
|
std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl;
|
|
std::cout << "will be used as default values for these parameters." << std::endl;
|
|
return 1;
|
|
}
|
|
|
|
char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
|
|
if(!g_has_set_repeat && env_EIGEN_REPEAT)
|
|
set_repeat_from_string(env_EIGEN_REPEAT);
|
|
char *env_EIGEN_SEED = getenv("EIGEN_SEED");
|
|
if(!g_has_set_seed && env_EIGEN_SEED)
|
|
set_seed_from_string(env_EIGEN_SEED);
|
|
|
|
if(!g_has_set_seed) g_seed = (unsigned int) time(NULL);
|
|
if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
|
|
|
|
std::cout << "Initializing random number generator with seed " << g_seed << std::endl;
|
|
srand(g_seed);
|
|
std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
|
|
|
|
Eigen::g_test_stack.push_back(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC));
|
|
|
|
EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
|
|
return 0;
|
|
}
|
|
|