mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
105 lines
3.3 KiB
C++
105 lines
3.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/LU>
|
|
|
|
template<typename MatrixType> void inverse(const MatrixType& m)
|
|
{
|
|
using std::abs;
|
|
typedef typename MatrixType::Index Index;
|
|
/* this test covers the following files:
|
|
Inverse.h
|
|
*/
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
MatrixType m1(rows, cols),
|
|
m2(rows, cols),
|
|
identity = MatrixType::Identity(rows, rows);
|
|
createRandomPIMatrixOfRank(rows,rows,rows,m1);
|
|
m2 = m1.inverse();
|
|
VERIFY_IS_APPROX(m1, m2.inverse() );
|
|
|
|
VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5));
|
|
|
|
VERIFY_IS_APPROX(identity, m1.inverse() * m1 );
|
|
VERIFY_IS_APPROX(identity, m1 * m1.inverse() );
|
|
|
|
VERIFY_IS_APPROX(m1, m1.inverse().inverse() );
|
|
|
|
// since for the general case we implement separately row-major and col-major, test that
|
|
VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose()));
|
|
|
|
#if !defined(EIGEN_TEST_PART_5) && !defined(EIGEN_TEST_PART_6)
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
|
|
|
//computeInverseAndDetWithCheck tests
|
|
//First: an invertible matrix
|
|
bool invertible;
|
|
RealScalar det;
|
|
|
|
m2.setZero();
|
|
m1.computeInverseAndDetWithCheck(m2, det, invertible);
|
|
VERIFY(invertible);
|
|
VERIFY_IS_APPROX(identity, m1*m2);
|
|
VERIFY_IS_APPROX(det, m1.determinant());
|
|
|
|
m2.setZero();
|
|
m1.computeInverseWithCheck(m2, invertible);
|
|
VERIFY(invertible);
|
|
VERIFY_IS_APPROX(identity, m1*m2);
|
|
|
|
//Second: a rank one matrix (not invertible, except for 1x1 matrices)
|
|
VectorType v3 = VectorType::Random(rows);
|
|
MatrixType m3 = v3*v3.transpose(), m4(rows,cols);
|
|
m3.computeInverseAndDetWithCheck(m4, det, invertible);
|
|
VERIFY( rows==1 ? invertible : !invertible );
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(det-m3.determinant()), RealScalar(1));
|
|
m3.computeInverseWithCheck(m4, invertible);
|
|
VERIFY( rows==1 ? invertible : !invertible );
|
|
#endif
|
|
|
|
// check in-place inversion
|
|
if(MatrixType::RowsAtCompileTime>=2 && MatrixType::RowsAtCompileTime<=4)
|
|
{
|
|
// in-place is forbidden
|
|
VERIFY_RAISES_ASSERT(m1 = m1.inverse());
|
|
}
|
|
else
|
|
{
|
|
m2 = m1.inverse();
|
|
m1 = m1.inverse();
|
|
VERIFY_IS_APPROX(m1,m2);
|
|
}
|
|
}
|
|
|
|
void test_inverse()
|
|
{
|
|
int s = 0;
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) );
|
|
CALL_SUBTEST_2( inverse(Matrix2d()) );
|
|
CALL_SUBTEST_3( inverse(Matrix3f()) );
|
|
CALL_SUBTEST_4( inverse(Matrix4f()) );
|
|
CALL_SUBTEST_4( inverse(Matrix<float,4,4,DontAlign>()) );
|
|
s = internal::random<int>(50,320);
|
|
CALL_SUBTEST_5( inverse(MatrixXf(s,s)) );
|
|
s = internal::random<int>(25,100);
|
|
CALL_SUBTEST_6( inverse(MatrixXcd(s,s)) );
|
|
CALL_SUBTEST_7( inverse(Matrix4d()) );
|
|
CALL_SUBTEST_7( inverse(Matrix<double,4,4,DontAlign>()) );
|
|
}
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
|
}
|