eigen/unsupported/test/cxx11_tensor_random_cuda.cu
2017-08-31 02:49:39 +00:00

92 lines
2.5 KiB
Plaintext

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_random_cuda
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
void test_cuda_random_uniform()
{
Tensor<float, 2> out(72,97);
out.setZero();
std::size_t out_bytes = out.size() * sizeof(float);
float* d_out;
cudaMalloc((void**)(&d_out), out_bytes);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97);
gpu_out.device(gpu_device) = gpu_out.random();
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
// For now we just check thes code doesn't crash.
// TODO: come up with a valid test of randomness
}
void test_cuda_random_normal()
{
Tensor<float, 2> out(72,97);
out.setZero();
std::size_t out_bytes = out.size() * sizeof(float);
float* d_out;
cudaMalloc((void**)(&d_out), out_bytes);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97);
Eigen::internal::NormalRandomGenerator<float> gen(true);
gpu_out.device(gpu_device) = gpu_out.random(gen);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
}
static void test_complex()
{
Tensor<std::complex<float>, 1> vec(6);
vec.setRandom();
// Fixme: we should check that the generated numbers follow a uniform
// distribution instead.
for (int i = 1; i < 6; ++i) {
VERIFY_IS_NOT_EQUAL(vec(i), vec(i-1));
}
}
void test_cxx11_tensor_random_cuda()
{
CALL_SUBTEST(test_cuda_random_uniform());
CALL_SUBTEST(test_cuda_random_normal());
CALL_SUBTEST(test_complex());
}