eigen/unsupported/test/cxx11_tensor_builtins_sycl.cpp
2017-02-01 15:29:53 +00:00

268 lines
17 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_builtins_sycl
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#define EIGEN_USE_SYCL
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::array;
using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;
namespace std {
template <typename T> T rsqrt(T x) { return 1 / std::sqrt(x); }
template <typename T> T square(T x) { return x * x; }
template <typename T> T cube(T x) { return x * x * x; }
template <typename T> T inverse(T x) { return 1 / x; }
}
#define TEST_UNARY_BUILTINS_FOR_SCALAR(FUNC, SCALAR, OPERATOR, Layout) \
{ \
/* out OPERATOR in.FUNC() */ \
Tensor<SCALAR, 3, Layout, int64_t> in(tensorRange); \
Tensor<SCALAR, 3, Layout, int64_t> out(tensorRange); \
in = in.random() + static_cast<SCALAR>(0.01); \
out = out.random() + static_cast<SCALAR>(0.01); \
Tensor<SCALAR, 3, Layout, int64_t> reference(out); \
SCALAR *gpu_data = static_cast<SCALAR *>( \
sycl_device.allocate(in.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu(gpu_data, tensorRange); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu_out(gpu_data_out, tensorRange); \
sycl_device.memcpyHostToDevice(gpu_data, in.data(), \
(in.size()) * sizeof(SCALAR)); \
sycl_device.memcpyHostToDevice(gpu_data_out, out.data(), \
(out.size()) * sizeof(SCALAR)); \
gpu_out.device(sycl_device) OPERATOR gpu.FUNC(); \
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
(out.size()) * sizeof(SCALAR)); \
for (int64_t i = 0; i < out.size(); ++i) { \
SCALAR ver = reference(i); \
ver OPERATOR std::FUNC(in(i)); \
VERIFY_IS_APPROX(out(i), ver); \
} \
sycl_device.deallocate(gpu_data); \
sycl_device.deallocate(gpu_data_out); \
} \
{ \
/* out OPERATOR out.FUNC() */ \
Tensor<SCALAR, 3, Layout, int64_t> out(tensorRange); \
out = out.random() + static_cast<SCALAR>(0.01); \
Tensor<SCALAR, 3, Layout, int64_t> reference(out); \
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu_out(gpu_data_out, tensorRange); \
sycl_device.memcpyHostToDevice(gpu_data_out, out.data(), \
(out.size()) * sizeof(SCALAR)); \
gpu_out.device(sycl_device) OPERATOR gpu_out.FUNC(); \
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
(out.size()) * sizeof(SCALAR)); \
for (int64_t i = 0; i < out.size(); ++i) { \
SCALAR ver = reference(i); \
ver OPERATOR std::FUNC(reference(i)); \
VERIFY_IS_APPROX(out(i), ver); \
} \
sycl_device.deallocate(gpu_data_out); \
}
#define TEST_UNARY_BUILTINS_OPERATOR(SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(abs, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(sqrt, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(rsqrt, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(square, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(cube, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(inverse, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(tanh, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(exp, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(expm1, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(log, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(abs, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(ceil, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(floor, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(round, SCALAR, OPERATOR , Layout) \
TEST_UNARY_BUILTINS_FOR_SCALAR(log1p, SCALAR, OPERATOR , Layout)
#define TEST_IS_THAT_RETURNS_BOOL(SCALAR, FUNC, Layout) \
{ \
/* out = in.FUNC() */ \
Tensor<SCALAR, 3, Layout, int64_t> in(tensorRange); \
Tensor<bool, 3, Layout, int64_t> out(tensorRange); \
in = in.random() + static_cast<SCALAR>(0.01); \
SCALAR *gpu_data = static_cast<SCALAR *>( \
sycl_device.allocate(in.size() * sizeof(SCALAR))); \
bool *gpu_data_out = \
static_cast<bool *>(sycl_device.allocate(out.size() * sizeof(bool))); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu(gpu_data, tensorRange); \
TensorMap<Tensor<bool, 3, Layout, int64_t>> gpu_out(gpu_data_out, tensorRange); \
sycl_device.memcpyHostToDevice(gpu_data, in.data(), \
(in.size()) * sizeof(SCALAR)); \
gpu_out.device(sycl_device) = gpu.FUNC(); \
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
(out.size()) * sizeof(bool)); \
for (int64_t i = 0; i < out.size(); ++i) { \
VERIFY_IS_EQUAL(out(i), std::FUNC(in(i))); \
} \
sycl_device.deallocate(gpu_data); \
sycl_device.deallocate(gpu_data_out); \
}
#define TEST_UNARY_BUILTINS(SCALAR, Layout) \
TEST_UNARY_BUILTINS_OPERATOR(SCALAR, +=, Layout) \
TEST_UNARY_BUILTINS_OPERATOR(SCALAR, =, Layout) \
TEST_IS_THAT_RETURNS_BOOL(SCALAR, isnan, Layout) \
TEST_IS_THAT_RETURNS_BOOL(SCALAR, isfinite, Layout) \
TEST_IS_THAT_RETURNS_BOOL(SCALAR, isinf, Layout)
static void test_builtin_unary_sycl(const Eigen::SyclDevice &sycl_device) {
int64_t sizeDim1 = 10;
int64_t sizeDim2 = 10;
int64_t sizeDim3 = 10;
array<int64_t, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
TEST_UNARY_BUILTINS(float, RowMajor)
TEST_UNARY_BUILTINS(float, ColMajor)
}
namespace std {
template <typename T> T cwiseMax(T x, T y) { return std::max(x, y); }
template <typename T> T cwiseMin(T x, T y) { return std::min(x, y); }
}
#define TEST_BINARY_BUILTINS_FUNC(SCALAR, FUNC, Layout) \
{ \
/* out = in_1.FUNC(in_2) */ \
Tensor<SCALAR, 3, Layout, int64_t> in_1(tensorRange); \
Tensor<SCALAR, 3, Layout, int64_t> in_2(tensorRange); \
Tensor<SCALAR, 3, Layout, int64_t> out(tensorRange); \
in_1 = in_1.random() + static_cast<SCALAR>(0.01); \
in_2 = in_2.random() + static_cast<SCALAR>(0.01); \
Tensor<SCALAR, 3, Layout, int64_t> reference(out); \
SCALAR *gpu_data_1 = static_cast<SCALAR *>( \
sycl_device.allocate(in_1.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_2 = static_cast<SCALAR *>( \
sycl_device.allocate(in_2.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu_1(gpu_data_1, tensorRange); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu_2(gpu_data_2, tensorRange); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu_out(gpu_data_out, tensorRange); \
sycl_device.memcpyHostToDevice(gpu_data_1, in_1.data(), \
(in_1.size()) * sizeof(SCALAR)); \
sycl_device.memcpyHostToDevice(gpu_data_2, in_2.data(), \
(in_2.size()) * sizeof(SCALAR)); \
gpu_out.device(sycl_device) = gpu_1.FUNC(gpu_2); \
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
(out.size()) * sizeof(SCALAR)); \
for (int64_t i = 0; i < out.size(); ++i) { \
SCALAR ver = reference(i); \
ver = std::FUNC(in_1(i), in_2(i)); \
VERIFY_IS_APPROX(out(i), ver); \
} \
sycl_device.deallocate(gpu_data_1); \
sycl_device.deallocate(gpu_data_2); \
sycl_device.deallocate(gpu_data_out); \
}
#define TEST_BINARY_BUILTINS_OPERATORS(SCALAR, OPERATOR, Layout) \
{ \
/* out = in_1 OPERATOR in_2 */ \
Tensor<SCALAR, 3, Layout, int64_t> in_1(tensorRange); \
Tensor<SCALAR, 3, Layout, int64_t> in_2(tensorRange); \
Tensor<SCALAR, 3, Layout, int64_t> out(tensorRange); \
in_1 = in_1.random() + static_cast<SCALAR>(0.01); \
in_2 = in_2.random() + static_cast<SCALAR>(0.01); \
Tensor<SCALAR, 3, Layout, int64_t> reference(out); \
SCALAR *gpu_data_1 = static_cast<SCALAR *>( \
sycl_device.allocate(in_1.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_2 = static_cast<SCALAR *>( \
sycl_device.allocate(in_2.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu_1(gpu_data_1, tensorRange); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu_2(gpu_data_2, tensorRange); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu_out(gpu_data_out, tensorRange); \
sycl_device.memcpyHostToDevice(gpu_data_1, in_1.data(), \
(in_1.size()) * sizeof(SCALAR)); \
sycl_device.memcpyHostToDevice(gpu_data_2, in_2.data(), \
(in_2.size()) * sizeof(SCALAR)); \
gpu_out.device(sycl_device) = gpu_1 OPERATOR gpu_2; \
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
(out.size()) * sizeof(SCALAR)); \
for (int64_t i = 0; i < out.size(); ++i) { \
VERIFY_IS_APPROX(out(i), in_1(i) OPERATOR in_2(i)); \
} \
sycl_device.deallocate(gpu_data_1); \
sycl_device.deallocate(gpu_data_2); \
sycl_device.deallocate(gpu_data_out); \
}
#define TEST_BINARY_BUILTINS_OPERATORS_THAT_TAKES_SCALAR(SCALAR, OPERATOR, Layout) \
{ \
/* out = in_1 OPERATOR 2 */ \
Tensor<SCALAR, 3, Layout, int64_t> in_1(tensorRange); \
Tensor<SCALAR, 3, Layout, int64_t> out(tensorRange); \
in_1 = in_1.random() + static_cast<SCALAR>(0.01); \
Tensor<SCALAR, 3, Layout, int64_t> reference(out); \
SCALAR *gpu_data_1 = static_cast<SCALAR *>( \
sycl_device.allocate(in_1.size() * sizeof(SCALAR))); \
SCALAR *gpu_data_out = static_cast<SCALAR *>( \
sycl_device.allocate(out.size() * sizeof(SCALAR))); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu_1(gpu_data_1, tensorRange); \
TensorMap<Tensor<SCALAR, 3, Layout, int64_t>> gpu_out(gpu_data_out, tensorRange); \
sycl_device.memcpyHostToDevice(gpu_data_1, in_1.data(), \
(in_1.size()) * sizeof(SCALAR)); \
gpu_out.device(sycl_device) = gpu_1 OPERATOR 2; \
sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, \
(out.size()) * sizeof(SCALAR)); \
for (int64_t i = 0; i < out.size(); ++i) { \
VERIFY_IS_APPROX(out(i), in_1(i) OPERATOR 2); \
} \
sycl_device.deallocate(gpu_data_1); \
sycl_device.deallocate(gpu_data_out); \
}
#define TEST_BINARY_BUILTINS(SCALAR, Layout) \
TEST_BINARY_BUILTINS_FUNC(SCALAR, cwiseMax , Layout) \
TEST_BINARY_BUILTINS_FUNC(SCALAR, cwiseMin , Layout) \
TEST_BINARY_BUILTINS_OPERATORS(SCALAR, + , Layout) \
TEST_BINARY_BUILTINS_OPERATORS(SCALAR, - , Layout) \
TEST_BINARY_BUILTINS_OPERATORS(SCALAR, * , Layout) \
TEST_BINARY_BUILTINS_OPERATORS(SCALAR, / , Layout)
static void test_builtin_binary_sycl(const Eigen::SyclDevice &sycl_device) {
int64_t sizeDim1 = 10;
int64_t sizeDim2 = 10;
int64_t sizeDim3 = 10;
array<int64_t, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
TEST_BINARY_BUILTINS(float, RowMajor)
TEST_BINARY_BUILTINS_OPERATORS_THAT_TAKES_SCALAR(int, %, RowMajor)
TEST_BINARY_BUILTINS(float, ColMajor)
TEST_BINARY_BUILTINS_OPERATORS_THAT_TAKES_SCALAR(int, %, ColMajor)
}
void test_cxx11_tensor_builtins_sycl() {
for (const auto& device :Eigen::get_sycl_supported_devices()) {
QueueInterface queueInterface(device);
Eigen::SyclDevice sycl_device(&queueInterface);
CALL_SUBTEST(test_builtin_unary_sycl(sycl_device));
CALL_SUBTEST(test_builtin_binary_sycl(sycl_device));
}
}