mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
133 lines
5.2 KiB
C++
133 lines
5.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Array>
|
|
#include <Eigen/QR>
|
|
|
|
template<typename Derived1, typename Derived2>
|
|
bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = precision<typename Derived1::RealScalar>())
|
|
{
|
|
return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon
|
|
* std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
|
|
}
|
|
|
|
template<typename MatrixType> void product(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
Identity.h Product.h
|
|
*/
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
|
|
MatrixType::Options^RowMajor> OtherMajorMatrixType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
// this test relies a lot on Random.h, and there's not much more that we can do
|
|
// to test it, hence I consider that we will have tested Random.h
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::Zero(rows, cols);
|
|
RowSquareMatrixType
|
|
identity = RowSquareMatrixType::Identity(rows, rows),
|
|
square = RowSquareMatrixType::Random(rows, rows),
|
|
res = RowSquareMatrixType::Random(rows, rows);
|
|
ColSquareMatrixType
|
|
square2 = ColSquareMatrixType::Random(cols, cols),
|
|
res2 = ColSquareMatrixType::Random(cols, cols);
|
|
RowVectorType v1 = RowVectorType::Random(rows),
|
|
v2 = RowVectorType::Random(rows),
|
|
vzero = RowVectorType::Zero(rows);
|
|
ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
|
|
OtherMajorMatrixType tm1 = m1;
|
|
|
|
Scalar s1 = ei_random<Scalar>();
|
|
|
|
int r = ei_random<int>(0, rows-1),
|
|
c = ei_random<int>(0, cols-1);
|
|
|
|
// begin testing Product.h: only associativity for now
|
|
// (we use Transpose.h but this doesn't count as a test for it)
|
|
|
|
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
|
|
m3 = m1;
|
|
m3 *= m1.transpose() * m2;
|
|
VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
|
|
VERIFY_IS_APPROX(m3, m1.lazy() * (m1.transpose()*m2));
|
|
|
|
// continue testing Product.h: distributivity
|
|
VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
|
|
VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
|
|
|
|
// continue testing Product.h: compatibility with ScalarMultiple.h
|
|
VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
|
|
VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
|
|
|
|
// again, test operator() to check const-qualification
|
|
s1 += (square.lazy() * m1)(r,c);
|
|
|
|
// test Product.h together with Identity.h
|
|
VERIFY_IS_APPROX(v1, identity*v1);
|
|
VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity);
|
|
// again, test operator() to check const-qualification
|
|
VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
|
|
|
|
if (rows!=cols)
|
|
VERIFY_RAISES_ASSERT(m3 = m1*m1);
|
|
|
|
// test the previous tests were not screwed up because operator* returns 0
|
|
// (we use the more accurate default epsilon)
|
|
if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
|
|
{
|
|
VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
|
|
}
|
|
|
|
// test optimized operator+= path
|
|
res = square;
|
|
res += (m1 * m2.transpose()).lazy();
|
|
VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
|
|
if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
|
|
{
|
|
VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
|
|
}
|
|
vcres = vc2;
|
|
vcres += (m1.transpose() * v1).lazy();
|
|
VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
|
|
tm1 = m1;
|
|
VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
|
|
VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
|
|
|
|
// test submatrix and matrix/vector product
|
|
for (int i=0; i<rows; ++i)
|
|
res.row(i) = m1.row(i) * m2.transpose();
|
|
VERIFY_IS_APPROX(res, m1 * m2.transpose());
|
|
// the other way round:
|
|
for (int i=0; i<rows; ++i)
|
|
res.col(i) = m1 * m2.transpose().col(i);
|
|
VERIFY_IS_APPROX(res, m1 * m2.transpose());
|
|
|
|
res2 = square2;
|
|
res2 += (m1.transpose() * m2).lazy();
|
|
VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
|
|
|
|
if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
|
|
{
|
|
VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
|
|
}
|
|
}
|
|
|