mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
a1ba995f05
* in LDLT, support the negative semidefinite case * fix bad floating-point comparisons, improves greatly the accuracy of methods like isPositiveDefinite() and rank() * simplifications * identify (but not resolve) bug: claim that only triangular part is used, is inaccurate * expanded unit-tests
200 lines
6.4 KiB
C++
200 lines
6.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#define EIGEN_NO_ASSERTION_CHECKING
|
|
#include "main.h"
|
|
#include <Eigen/Cholesky>
|
|
#include <Eigen/QR>
|
|
|
|
#ifdef HAS_GSL
|
|
#include "gsl_helper.h"
|
|
#endif
|
|
|
|
template<typename MatrixType> void cholesky(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
LLT.h LDLT.h
|
|
*/
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
MatrixType a0 = MatrixType::Random(rows,cols);
|
|
VectorType vecB = VectorType::Random(rows), vecX(rows);
|
|
MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
|
|
SquareMatrixType symm = a0 * a0.adjoint();
|
|
// let's make sure the matrix is not singular or near singular
|
|
MatrixType a1 = MatrixType::Random(rows,cols);
|
|
symm += a1 * a1.adjoint();
|
|
|
|
// to test if really Cholesky only uses the upper triangular part, uncomment the following
|
|
// FIXME: currently that fails !!
|
|
//symm.template part<StrictlyLowerTriangular>().setZero();
|
|
|
|
#ifdef HAS_GSL
|
|
if (ei_is_same_type<RealScalar,double>::ret)
|
|
{
|
|
typedef GslTraits<Scalar> Gsl;
|
|
typename Gsl::Matrix gMatA=0, gSymm=0;
|
|
typename Gsl::Vector gVecB=0, gVecX=0;
|
|
convert<MatrixType>(symm, gSymm);
|
|
convert<MatrixType>(symm, gMatA);
|
|
convert<VectorType>(vecB, gVecB);
|
|
convert<VectorType>(vecB, gVecX);
|
|
Gsl::cholesky(gMatA);
|
|
Gsl::cholesky_solve(gMatA, gVecB, gVecX);
|
|
VectorType vecX(rows), _vecX, _vecB;
|
|
convert(gVecX, _vecX);
|
|
symm.llt().solve(vecB, &vecX);
|
|
Gsl::prod(gSymm, gVecX, gVecB);
|
|
convert(gVecB, _vecB);
|
|
// test gsl itself !
|
|
VERIFY_IS_APPROX(vecB, _vecB);
|
|
VERIFY_IS_APPROX(vecX, _vecX);
|
|
|
|
Gsl::free(gMatA);
|
|
Gsl::free(gSymm);
|
|
Gsl::free(gVecB);
|
|
Gsl::free(gVecX);
|
|
}
|
|
#endif
|
|
|
|
{
|
|
LLT<SquareMatrixType> chol(symm);
|
|
VERIFY(chol.isPositiveDefinite());
|
|
VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint());
|
|
chol.solve(vecB, &vecX);
|
|
VERIFY_IS_APPROX(symm * vecX, vecB);
|
|
chol.solve(matB, &matX);
|
|
VERIFY_IS_APPROX(symm * matX, matB);
|
|
}
|
|
|
|
int sign = ei_random<int>()%2 ? 1 : -1;
|
|
|
|
if(sign == -1)
|
|
{
|
|
symm = -symm; // test a negative matrix
|
|
}
|
|
|
|
{
|
|
LDLT<SquareMatrixType> ldlt(symm);
|
|
VERIFY(ldlt.isInvertible());
|
|
if(sign == 1)
|
|
{
|
|
VERIFY(ldlt.isPositive());
|
|
VERIFY(ldlt.isPositiveDefinite());
|
|
}
|
|
if(sign == -1)
|
|
{
|
|
VERIFY(ldlt.isNegative());
|
|
VERIFY(ldlt.isNegativeDefinite());
|
|
}
|
|
|
|
// TODO(keir): This doesn't make sense now that LDLT pivots.
|
|
//VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
|
|
ldlt.solve(vecB, &vecX);
|
|
VERIFY_IS_APPROX(symm * vecX, vecB);
|
|
ldlt.solve(matB, &matX);
|
|
VERIFY_IS_APPROX(symm * matX, matB);
|
|
}
|
|
|
|
// test isPositiveDefinite on non definite matrix
|
|
if (rows>4)
|
|
{
|
|
SquareMatrixType symm = a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint();
|
|
LLT<SquareMatrixType> chol(symm);
|
|
VERIFY(!chol.isPositiveDefinite());
|
|
LDLT<SquareMatrixType> cholnosqrt(symm);
|
|
VERIFY(!cholnosqrt.isPositiveDefinite());
|
|
}
|
|
}
|
|
|
|
template<typename Derived>
|
|
void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
|
|
{
|
|
typedef typename Derived::RealScalar RealScalar;
|
|
for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
|
|
{
|
|
RealScalar d = Eigen::ei_random<RealScalar>(-1,1);
|
|
int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
|
|
int j;
|
|
do {
|
|
j = Eigen::ei_random<int>(0,m.rows()-1);
|
|
} while (i==j); // j is another one (must be different)
|
|
m.row(i) += d * m.row(j);
|
|
|
|
i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
|
|
do {
|
|
j = Eigen::ei_random<int>(0,m.cols()-1);
|
|
} while (i==j); // j is another one (must be different)
|
|
m.col(i) += d * m.col(j);
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType> void ldlt_rank()
|
|
{
|
|
// NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function
|
|
int rows = ei_random<int>(50,200);
|
|
int rank = ei_random<int>(40, rows-1);
|
|
|
|
|
|
// generate a random positive matrix a of given rank
|
|
MatrixType m = MatrixType::Random(rows,rows);
|
|
QR<MatrixType> qr(m);
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> DiagVectorType;
|
|
DiagVectorType d(rows);
|
|
d.setZero();
|
|
for(int i = 0; i < rank; i++) d(i)=RealScalar(1);
|
|
MatrixType a = qr.matrixQ() * d.asDiagonal() * qr.matrixQ().adjoint();
|
|
|
|
LDLT<MatrixType> ldlt(a);
|
|
|
|
VERIFY( ei_abs(ldlt.rank() - rank) <= rank / 20 ); // yes, LDLT::rank is a bit inaccurate...
|
|
}
|
|
|
|
|
|
void test_cholesky()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( cholesky(Matrix<double,1,1>()) );
|
|
CALL_SUBTEST( cholesky(Matrix2d()) );
|
|
CALL_SUBTEST( cholesky(Matrix3f()) );
|
|
CALL_SUBTEST( cholesky(Matrix4d()) );
|
|
CALL_SUBTEST( cholesky(MatrixXcd(7,7)) );
|
|
CALL_SUBTEST( cholesky(MatrixXd(17,17)) );
|
|
CALL_SUBTEST( cholesky(MatrixXf(200,200)) );
|
|
}
|
|
for(int i = 0; i < g_repeat/3; i++) {
|
|
CALL_SUBTEST( ldlt_rank<MatrixXd>() );
|
|
CALL_SUBTEST( ldlt_rank<MatrixXf>() );
|
|
CALL_SUBTEST( ldlt_rank<MatrixXcd>() );
|
|
}
|
|
}
|