mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
cf0f82ecbe
- remove some useless stuff => let's focus on a single sparse matrix format - finalize the new RandomSetter
374 lines
13 KiB
C++
374 lines
13 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifdef __GNUC__
|
|
#include <ext/hash_map>
|
|
#endif
|
|
|
|
#ifdef EIGEN_GOOGLEHASH_SUPPORT
|
|
#include <google/sparse_hash_map>
|
|
#endif
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Cholesky>
|
|
#include <Eigen/LU>
|
|
#include <Eigen/Sparse>
|
|
|
|
enum {
|
|
ForceNonZeroDiag = 1,
|
|
MakeLowerTriangular = 2,
|
|
MakeUpperTriangular = 4
|
|
};
|
|
|
|
template<typename Scalar> void
|
|
initSparse(double density,
|
|
Matrix<Scalar,Dynamic,Dynamic>& refMat,
|
|
SparseMatrix<Scalar>& sparseMat,
|
|
int flags = 0,
|
|
std::vector<Vector2i>* zeroCoords = 0,
|
|
std::vector<Vector2i>* nonzeroCoords = 0)
|
|
{
|
|
sparseMat.startFill(refMat.rows()*refMat.cols()*density);
|
|
for(int j=0; j<refMat.cols(); j++)
|
|
{
|
|
for(int i=0; i<refMat.rows(); i++)
|
|
{
|
|
Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
|
|
if ((flags&ForceNonZeroDiag) && (i==j))
|
|
{
|
|
v = ei_random<Scalar>()*Scalar(3.);
|
|
v = v*v + Scalar(5.);
|
|
}
|
|
if ((flags & MakeLowerTriangular) && j>i)
|
|
v = Scalar(0);
|
|
else if ((flags & MakeUpperTriangular) && j<i)
|
|
v = Scalar(0);
|
|
if (v!=Scalar(0))
|
|
{
|
|
sparseMat.fill(i,j) = v;
|
|
if (nonzeroCoords)
|
|
nonzeroCoords->push_back(Vector2i(i,j));
|
|
}
|
|
else if (zeroCoords)
|
|
{
|
|
zeroCoords->push_back(Vector2i(i,j));
|
|
}
|
|
refMat(i,j) = v;
|
|
}
|
|
}
|
|
sparseMat.endFill();
|
|
}
|
|
|
|
template<typename SetterType,typename DenseType, typename SparseType>
|
|
bool test_random_setter(SparseType& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
|
|
{
|
|
{
|
|
sm.setZero();
|
|
SetterType w(sm);
|
|
std::vector<Vector2i> remaining = nonzeroCoords;
|
|
while(!remaining.empty())
|
|
{
|
|
int i = ei_random<int>(0,remaining.size()-1);
|
|
w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
|
|
remaining[i] = remaining.back();
|
|
remaining.pop_back();
|
|
}
|
|
}
|
|
return sm.isApprox(ref);
|
|
}
|
|
|
|
template<typename Scalar> void sparse(int rows, int cols)
|
|
{
|
|
double density = std::max(8./(rows*cols), 0.01);
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
|
Scalar eps = 1e-6;
|
|
|
|
SparseMatrix<Scalar> m(rows, cols);
|
|
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
|
|
DenseVector vec1 = DenseVector::Random(rows);
|
|
|
|
std::vector<Vector2i> zeroCoords;
|
|
std::vector<Vector2i> nonzeroCoords;
|
|
initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
|
|
|
|
VERIFY(zeroCoords.size()>0 && "re-run the test");
|
|
VERIFY(nonzeroCoords.size()>0 && "re-run the test");
|
|
|
|
// test coeff and coeffRef
|
|
for (int i=0; i<(int)zeroCoords.size(); ++i)
|
|
{
|
|
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
|
|
VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
|
|
}
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
|
|
m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
|
refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
|
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
|
|
// test InnerIterators and Block expressions
|
|
for (int t=0; t<10; ++t)
|
|
{
|
|
int j = ei_random<int>(0,cols-1);
|
|
int i = ei_random<int>(0,rows-1);
|
|
int w = ei_random<int>(1,cols-j-1);
|
|
int h = ei_random<int>(1,rows-i-1);
|
|
|
|
VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
|
|
for(int c=0; c<w; c++)
|
|
{
|
|
VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
|
|
for(int r=0; r<h; r++)
|
|
{
|
|
VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
|
|
}
|
|
}
|
|
for(int r=0; r<h; r++)
|
|
{
|
|
VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
|
|
for(int c=0; c<w; c++)
|
|
{
|
|
VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
|
|
}
|
|
}
|
|
}
|
|
|
|
for(int c=0; c<cols; c++)
|
|
{
|
|
VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
|
|
VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
|
|
}
|
|
|
|
for(int r=0; r<rows; r++)
|
|
{
|
|
VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
|
|
VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
|
|
}
|
|
|
|
// test SparseSetters
|
|
// coherent setter
|
|
// TODO extend the MatrixSetter
|
|
// {
|
|
// m.setZero();
|
|
// VERIFY_IS_NOT_APPROX(m, refMat);
|
|
// SparseSetter<SparseMatrix<Scalar>, FullyCoherentAccessPattern> w(m);
|
|
// for (int i=0; i<nonzeroCoords.size(); ++i)
|
|
// {
|
|
// w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
|
|
// }
|
|
// }
|
|
// VERIFY_IS_APPROX(m, refMat);
|
|
|
|
// random setter
|
|
// {
|
|
// m.setZero();
|
|
// VERIFY_IS_NOT_APPROX(m, refMat);
|
|
// SparseSetter<SparseMatrix<Scalar>, RandomAccessPattern> w(m);
|
|
// std::vector<Vector2i> remaining = nonzeroCoords;
|
|
// while(!remaining.empty())
|
|
// {
|
|
// int i = ei_random<int>(0,remaining.size()-1);
|
|
// w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
|
|
// remaining[i] = remaining.back();
|
|
// remaining.pop_back();
|
|
// }
|
|
// }
|
|
// VERIFY_IS_APPROX(m, refMat);
|
|
|
|
VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, StdMapTraits> >(m,refMat,nonzeroCoords) ));
|
|
#ifdef _HASH_MAP
|
|
VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, GnuHashMapTraits> >(m,refMat,nonzeroCoords) ));
|
|
#endif
|
|
#ifdef _DENSE_HASH_MAP_H_
|
|
VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
|
|
#endif
|
|
#ifdef _SPARSE_HASH_MAP_H_
|
|
VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
|
|
#endif
|
|
// {
|
|
// m.setZero();
|
|
// VERIFY_IS_NOT_APPROX(m, refMat);
|
|
// // RandomSetter<SparseMatrix<Scalar> > w(m);
|
|
// RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits > w(m);
|
|
// // RandomSetter<SparseMatrix<Scalar>, GnuHashMapTraits > w(m);
|
|
// std::vector<Vector2i> remaining = nonzeroCoords;
|
|
// while(!remaining.empty())
|
|
// {
|
|
// int i = ei_random<int>(0,remaining.size()-1);
|
|
// w(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
|
|
// remaining[i] = remaining.back();
|
|
// remaining.pop_back();
|
|
// }
|
|
// }
|
|
// std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n";
|
|
// VERIFY_IS_APPROX(m, refMat);
|
|
|
|
// test transpose
|
|
{
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
|
SparseMatrix<Scalar> m2(rows, rows);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
|
|
VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
|
|
}
|
|
#if 0
|
|
// test matrix product
|
|
{
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows);
|
|
DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows);
|
|
SparseMatrix<Scalar> m2(rows, rows);
|
|
SparseMatrix<Scalar> m3(rows, rows);
|
|
SparseMatrix<Scalar> m4(rows, rows);
|
|
initSparse<Scalar>(density, refMat2, m2);
|
|
initSparse<Scalar>(density, refMat3, m3);
|
|
initSparse<Scalar>(density, refMat4, m4);
|
|
VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
|
|
VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
|
|
VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
|
|
VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
|
|
}
|
|
|
|
// test triangular solver
|
|
{
|
|
DenseVector vec2 = vec1, vec3 = vec1;
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
|
|
|
|
// lower
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
|
|
VERIFY_IS_APPROX(refMat2.template marked<Lower>().solveTriangular(vec2),
|
|
m2.template marked<Lower>().solveTriangular(vec3));
|
|
|
|
// upper
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
|
|
VERIFY_IS_APPROX(refMat2.template marked<Upper>().solveTriangular(vec2),
|
|
m2.template marked<Upper>().solveTriangular(vec3));
|
|
|
|
// TODO test row major
|
|
}
|
|
|
|
// test LLT
|
|
if (!NumTraits<Scalar>::IsComplex)
|
|
{
|
|
// TODO fix the issue with complex (see SparseLLT::solveInPlace)
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector refX(cols), x(cols);
|
|
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
|
|
refMat2 += refMat2.adjoint();
|
|
refMat2.diagonal() *= 0.5;
|
|
|
|
refMat2.llt().solve(b, &refX);
|
|
typedef SparseMatrix<Scalar,Lower|SelfAdjoint> SparseSelfAdjointMatrix;
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x);
|
|
//VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
|
|
#ifdef EIGEN_CHOLMOD_SUPPORT
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
|
|
#endif
|
|
#ifdef EIGEN_TAUCS_SUPPORT
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
|
|
#endif
|
|
}
|
|
|
|
// test LU
|
|
{
|
|
static int count = 0;
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector refX(cols), x(cols);
|
|
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
|
|
|
|
LU<DenseMatrix> refLu(refMat2);
|
|
refLu.solve(b, &refX);
|
|
Scalar refDet = refLu.determinant();
|
|
x.setZero();
|
|
// // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
|
|
// // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
|
|
#ifdef EIGEN_SUPERLU_SUPPORT
|
|
{
|
|
x.setZero();
|
|
SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
|
|
if (slu.succeeded())
|
|
{
|
|
if (slu.solve(b,&x)) {
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
|
|
}
|
|
// std::cerr << refDet << " == " << slu.determinant() << "\n";
|
|
if (count==0) {
|
|
VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef EIGEN_UMFPACK_SUPPORT
|
|
{
|
|
// check solve
|
|
x.setZero();
|
|
SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2);
|
|
if (slu.succeeded()) {
|
|
if (slu.solve(b,&x)) {
|
|
if (count==0) {
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(refDet,slu.determinant());
|
|
// TODO check the extracted data
|
|
//std::cerr << slu.matrixL() << "\n";
|
|
}
|
|
}
|
|
#endif
|
|
count++;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void test_sparse()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( sparse<double>(8, 8) );
|
|
CALL_SUBTEST( sparse<std::complex<double> >(16, 16) );
|
|
CALL_SUBTEST( sparse<double>(33, 33) );
|
|
}
|
|
}
|