eigen/unsupported/Eigen/AlignedVector3
2009-09-10 09:22:06 +01:00

202 lines
5.8 KiB
Plaintext

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ALIGNED_VECTOR3
#define EIGEN_ALIGNED_VECTOR3
#include <Eigen/Geometry>
namespace Eigen {
/** \ingroup Unsupported_modules
* \defgroup AlignedVector3_Module Aligned vector3 module
*
* \code
* #include <unsupported/Eigen/AlignedVector3>
* \endcode
*/
//@{
/** \class AlignedVector3
*
* \brief A vectorization friendly 3D vector
*
* This class represents a 3D vector internally using a 4D vector
* such that vectorization can be seamlessly enabled. Of course,
* the same result can be achieved by directly using a 4D vector.
* This class makes this process simpler.
*
*/
// TODO specialize Cwise
template<typename _Scalar> class AlignedVector3;
template<typename _Scalar> struct ei_traits<AlignedVector3<_Scalar> >
: ei_traits<Matrix<_Scalar,3,1,0,4,1> >
{
};
template<typename _Scalar> class AlignedVector3
: public MatrixBase<AlignedVector3<_Scalar> >
{
typedef Matrix<_Scalar,4,1> CoeffType;
CoeffType m_coeffs;
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(AlignedVector3)
using Base::operator*;
inline int rows() const { return 3; }
inline int cols() const { return 1; }
inline const Scalar& coeff(int row, int col) const
{ return m_coeffs.coeff(row, col); }
inline Scalar& coeffRef(int row, int col)
{ return m_coeffs.coeffRef(row, col); }
inline const Scalar& coeff(int index) const
{ return m_coeffs.coeff(index); }
inline Scalar& coeffRef(int index)
{ return m_coeffs.coeffRef(index);}
inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z)
: m_coeffs(x, y, z, Scalar(0))
{}
inline AlignedVector3(const AlignedVector3& other)
: m_coeffs(other.m_coeffs)
{}
template<typename XprType, int Size=XprType::SizeAtCompileTime>
struct generic_assign_selector {};
template<typename XprType> struct generic_assign_selector<XprType,4>
{
inline static void run(AlignedVector3& dest, const XprType& src)
{
dest.m_coeffs = src;
}
};
template<typename XprType> struct generic_assign_selector<XprType,3>
{
inline static void run(AlignedVector3& dest, const XprType& src)
{
dest.m_coeffs.template start<3>() = src;
dest.m_coeffs.w() = Scalar(0);
}
};
template<typename Derived>
inline explicit AlignedVector3(const MatrixBase<Derived>& other)
{
generic_assign_selector<Derived>::run(*this,other.derived());
}
inline AlignedVector3& operator=(const AlignedVector3& other)
{ m_coeffs = other.m_coeffs; return *this; }
inline AlignedVector3 operator+(const AlignedVector3& other) const
{ return AlignedVector3(m_coeffs + other.m_coeffs); }
inline AlignedVector3& operator+=(const AlignedVector3& other)
{ m_coeffs += other.m_coeffs; return *this; }
inline AlignedVector3 operator-(const AlignedVector3& other) const
{ return AlignedVector3(m_coeffs - other.m_coeffs); }
inline AlignedVector3 operator-=(const AlignedVector3& other)
{ m_coeffs -= other.m_coeffs; return *this; }
inline AlignedVector3 operator*(const Scalar& s) const
{ return AlignedVector3(m_coeffs * s); }
inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec)
{ return AlignedVector3(s * vec.m_coeffs); }
inline AlignedVector3& operator*=(const Scalar& s)
{ m_coeffs *= s; return *this; }
inline AlignedVector3 operator/(const Scalar& s) const
{ return AlignedVector3(m_coeffs / s); }
inline AlignedVector3& operator/=(const Scalar& s)
{ m_coeffs /= s; return *this; }
inline Scalar dot(const AlignedVector3& other) const
{
ei_assert(m_coeffs.w()==Scalar(0));
ei_assert(other.m_coeffs.w()==Scalar(0));
return m_coeffs.dot(other.m_coeffs);
}
inline void normalize()
{
m_coeffs /= norm();
}
inline AlignedVector3 normalized()
{
return AlignedVector3(m_coeffs / norm());
}
inline Scalar sum() const
{
ei_assert(m_coeffs.w()==Scalar(0));
return m_coeffs.sum();
}
inline Scalar squaredNorm() const
{
ei_assert(m_coeffs.w()==Scalar(0));
return m_coeffs.squaredNorm();
}
inline Scalar norm() const
{
return ei_sqrt(squaredNorm());
}
inline AlignedVector3 cross(const AlignedVector3& other) const
{
return AlignedVector3(m_coeffs.cross3(other.m_coeffs));
}
template<typename Derived>
inline bool isApprox(const MatrixBase<Derived>& other, RealScalar eps=precision<Scalar>()) const
{
return m_coeffs.template start<3>().isApprox(other,eps);
}
};
//@}
}
#endif // EIGEN_ALIGNED_VECTOR3