2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2024-12-27 07:29:52 +08:00
eigen/test/qr.cpp
2009-01-20 10:38:56 +00:00

79 lines
2.8 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/QR>
template<typename MatrixType> void qr(const MatrixType& m)
{
/* this test covers the following files:
QR.h
*/
int rows = m.rows();
int cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
MatrixType a = MatrixType::Random(rows,cols);
QR<MatrixType> qrOfA(a);
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());
SquareMatrixType b = a.adjoint() * a;
// check tridiagonalization
Tridiagonalization<SquareMatrixType> tridiag(b);
VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
// check hessenberg decomposition
HessenbergDecomposition<SquareMatrixType> hess(b);
VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
b = SquareMatrixType::Random(cols,cols);
hess.compute(b);
VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
}
void test_qr()
{
for(int i = 0; i < 1; i++) {
CALL_SUBTEST( qr(Matrix2f()) );
CALL_SUBTEST( qr(Matrix4d()) );
CALL_SUBTEST( qr(MatrixXf(12,8)) );
CALL_SUBTEST( qr(MatrixXcd(5,5)) );
CALL_SUBTEST( qr(MatrixXcd(7,3)) );
}
// small isFullRank test
{
Matrix3d mat;
mat << 1, 45, 1, 2, 2, 2, 1, 2, 3;
VERIFY(mat.qr().isFullRank());
mat << 1, 1, 1, 2, 2, 2, 1, 2, 3;
VERIFY(!mat.qr().isFullRank());
}
}