mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
103 lines
3.6 KiB
C++
103 lines
3.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/SVD>
|
|
|
|
template<typename MatrixType> void svd(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
SVD.h
|
|
*/
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
MatrixType a = MatrixType::Random(rows,cols);
|
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b =
|
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1);
|
|
Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1);
|
|
|
|
RealScalar largerEps = test_precision<RealScalar>();
|
|
if (ei_is_same_type<RealScalar,float>::ret)
|
|
largerEps = 1e-3f;
|
|
|
|
{
|
|
SVD<MatrixType> svd(a);
|
|
MatrixType sigma = MatrixType::Zero(rows,cols);
|
|
MatrixType matU = MatrixType::Zero(rows,rows);
|
|
sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal();
|
|
matU.block(0,0,rows,cols) = svd.matrixU();
|
|
VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose());
|
|
}
|
|
|
|
|
|
if (rows==cols)
|
|
{
|
|
if (ei_is_same_type<RealScalar,float>::ret)
|
|
{
|
|
MatrixType a1 = MatrixType::Random(rows,cols);
|
|
a += a * a.adjoint() + a1 * a1.adjoint();
|
|
}
|
|
SVD<MatrixType> svd(a);
|
|
svd.solve(b, &x);
|
|
VERIFY_IS_APPROX(a * x,b);
|
|
}
|
|
|
|
|
|
if(rows==cols)
|
|
{
|
|
SVD<MatrixType> svd(a);
|
|
MatrixType unitary, positive;
|
|
svd.computeUnitaryPositive(&unitary, &positive);
|
|
VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
|
|
VERIFY_IS_APPROX(positive, positive.adjoint());
|
|
for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
|
|
VERIFY_IS_APPROX(unitary*positive, a);
|
|
|
|
svd.computePositiveUnitary(&positive, &unitary);
|
|
VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
|
|
VERIFY_IS_APPROX(positive, positive.adjoint());
|
|
for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
|
|
VERIFY_IS_APPROX(positive*unitary, a);
|
|
}
|
|
}
|
|
|
|
void test_eigen2_svd()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( svd(Matrix3f()) );
|
|
CALL_SUBTEST_2( svd(Matrix4d()) );
|
|
CALL_SUBTEST_3( svd(MatrixXf(7,7)) );
|
|
CALL_SUBTEST_4( svd(MatrixXd(14,7)) );
|
|
// complex are not implemented yet
|
|
// CALL_SUBTEST( svd(MatrixXcd(6,6)) );
|
|
// CALL_SUBTEST( svd(MatrixXcf(3,3)) );
|
|
SVD<MatrixXf> s;
|
|
MatrixXf m = MatrixXf::Random(10,1);
|
|
s.compute(m);
|
|
}
|
|
}
|