mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
2840ac7e94
* renaming, e.g. LU ---> FullPivLU * split tests framework: more robust, e.g. dont generate empty tests if a number is skipped * make all remaining tests use that splitting, as needed. * Fix 4x4 inversion (see stable branch) * Transform::inverse() and geo_transform test : adapt to new inverse() API, it was also trying to instantiate inverse() for 3x4 matrices. * CMakeLists: more robust regexp to parse the version number * misc fixes in unit tests
229 lines
8.9 KiB
C++
229 lines
8.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
// check minor separately in order to avoid the possible creation of a zero-sized
|
|
// array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic.
|
|
// Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage
|
|
// but this is probably not bad to raise such an error at compile time...
|
|
template<typename Scalar, int _Rows, int _Cols> struct CheckMinor
|
|
{
|
|
typedef Matrix<Scalar, _Rows, _Cols> MatrixType;
|
|
CheckMinor(MatrixType& m1, int r1, int c1)
|
|
{
|
|
int rows = m1.rows();
|
|
int cols = m1.cols();
|
|
|
|
Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval();
|
|
VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1));
|
|
mi = m1.minor(r1,c1);
|
|
VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1));
|
|
//check operator(), both constant and non-constant, on minor()
|
|
m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar> struct CheckMinor<Scalar,1,1>
|
|
{
|
|
typedef Matrix<Scalar, 1, 1> MatrixType;
|
|
CheckMinor(MatrixType&, int, int) {}
|
|
};
|
|
|
|
template<typename MatrixType> void submatrices(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
Row.h Column.h Block.h Minor.h DiagonalCoeffs.h
|
|
*/
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::Zero(rows, cols),
|
|
ones = MatrixType::Ones(rows, cols),
|
|
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::Identity(rows, rows),
|
|
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::Random(rows, rows);
|
|
VectorType v1 = VectorType::Random(rows),
|
|
v2 = VectorType::Random(rows),
|
|
v3 = VectorType::Random(rows),
|
|
vzero = VectorType::Zero(rows);
|
|
|
|
Scalar s1 = ei_random<Scalar>();
|
|
|
|
int r1 = ei_random<int>(0,rows-1);
|
|
int r2 = ei_random<int>(r1,rows-1);
|
|
int c1 = ei_random<int>(0,cols-1);
|
|
int c2 = ei_random<int>(c1,cols-1);
|
|
|
|
//check row() and col()
|
|
VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1));
|
|
// FIXME perhaps we should re-enable that without the .eval()
|
|
VERIFY_IS_APPROX(m1.col(c1).dot(square.row(r1)), (square * m1.conjugate()).eval()(r1,c1));
|
|
//check operator(), both constant and non-constant, on row() and col()
|
|
m1.row(r1) += s1 * m1.row(r2);
|
|
m1.col(c1) += s1 * m1.col(c2);
|
|
|
|
//check block()
|
|
Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
|
|
RowVectorType br1(m1.block(r1,0,1,cols));
|
|
VectorType bc1(m1.block(0,c1,rows,1));
|
|
VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1));
|
|
VERIFY_IS_APPROX(m1.row(r1), br1);
|
|
VERIFY_IS_APPROX(m1.col(c1), bc1);
|
|
//check operator(), both constant and non-constant, on block()
|
|
m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
|
|
m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
|
|
|
|
//check minor()
|
|
CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1);
|
|
|
|
//check diagonal()
|
|
VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
|
|
m2.diagonal() = 2 * m1.diagonal();
|
|
m2.diagonal()[0] *= 3;
|
|
|
|
const int BlockRows = EIGEN_ENUM_MIN(MatrixType::RowsAtCompileTime,2);
|
|
const int BlockCols = EIGEN_ENUM_MIN(MatrixType::ColsAtCompileTime,5);
|
|
if (rows>=5 && cols>=8)
|
|
{
|
|
// test fixed block() as lvalue
|
|
m1.template block<BlockRows,BlockCols>(1,1) *= s1;
|
|
// test operator() on fixed block() both as constant and non-constant
|
|
m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
|
|
// check that fixed block() and block() agree
|
|
Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
|
|
VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols));
|
|
}
|
|
|
|
if (rows>2)
|
|
{
|
|
// test sub vectors
|
|
VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1));
|
|
VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2));
|
|
VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2));
|
|
VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0));
|
|
int i = rows-2;
|
|
VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1));
|
|
VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2));
|
|
VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2));
|
|
VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i));
|
|
i = ei_random(0,rows-2);
|
|
VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i));
|
|
|
|
enum {
|
|
N1 = MatrixType::RowsAtCompileTime>1 ? 1 : 0,
|
|
N2 = MatrixType::RowsAtCompileTime>2 ? -2 : 0
|
|
};
|
|
|
|
// check sub/super diagonal
|
|
m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>();
|
|
m2.template diagonal<N1>()[0] *= 3;
|
|
VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]);
|
|
|
|
m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>();
|
|
m2.template diagonal<N2>()[0] *= 3;
|
|
VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]);
|
|
|
|
m2.diagonal(N1) = 2 * m1.diagonal(N1);
|
|
m2.diagonal(N1)[0] *= 3;
|
|
VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]);
|
|
|
|
m2.diagonal(N2) = 2 * m1.diagonal(N2);
|
|
m2.diagonal(N2)[0] *= 3;
|
|
VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]);
|
|
}
|
|
|
|
// stress some basic stuffs with block matrices
|
|
VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows));
|
|
VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols));
|
|
|
|
VERIFY(ei_real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows));
|
|
VERIFY(ei_real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols));
|
|
}
|
|
|
|
|
|
template<typename MatrixType>
|
|
void compare_using_data_and_stride(const MatrixType& m)
|
|
{
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
int size = m.size();
|
|
int stride = m.stride();
|
|
const typename MatrixType::Scalar* data = m.data();
|
|
|
|
for(int j=0;j<cols;++j)
|
|
for(int i=0;i<rows;++i)
|
|
VERIFY_IS_APPROX(m.coeff(i,j), data[(MatrixType::Flags&RowMajorBit) ? i*stride+j : j*stride + i]);
|
|
|
|
if(MatrixType::IsVectorAtCompileTime)
|
|
{
|
|
VERIFY_IS_APPROX(stride, int((&m.coeff(1))-(&m.coeff(0))));
|
|
for (int i=0;i<size;++i)
|
|
VERIFY_IS_APPROX(m.coeff(i), data[i*stride]);
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void data_and_stride(const MatrixType& m)
|
|
{
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
int r1 = ei_random<int>(0,rows-1);
|
|
int r2 = ei_random<int>(r1,rows-1);
|
|
int c1 = ei_random<int>(0,cols-1);
|
|
int c2 = ei_random<int>(c1,cols-1);
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols);
|
|
compare_using_data_and_stride(m1.block(r1, c1, r2-r1+1, c2-c1+1));
|
|
compare_using_data_and_stride(m1.transpose().block(c1, r1, c2-c1+1, r2-r1+1));
|
|
compare_using_data_and_stride(m1.row(r1));
|
|
compare_using_data_and_stride(m1.col(c1));
|
|
compare_using_data_and_stride(m1.row(r1).transpose());
|
|
compare_using_data_and_stride(m1.col(c1).transpose());
|
|
}
|
|
|
|
void test_submatrices()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( submatrices(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( submatrices(Matrix4d()) );
|
|
CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) );
|
|
CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) );
|
|
CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) );
|
|
CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) );
|
|
|
|
CALL_SUBTEST_6( data_and_stride(MatrixXf(ei_random(5,50), ei_random(5,50))) );
|
|
CALL_SUBTEST_7( data_and_stride(Matrix<int,Dynamic,Dynamic,RowMajor>(ei_random(5,50), ei_random(5,50))) );
|
|
}
|
|
}
|