mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
90 lines
3.4 KiB
C++
90 lines
3.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <limits>
|
|
#include <Eigen/Eigenvalues>
|
|
|
|
template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
|
|
{
|
|
typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
|
|
typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
|
|
|
|
// Test basic functionality: T is triangular and A = U T U*
|
|
for(int counter = 0; counter < g_repeat; ++counter) {
|
|
MatrixType A = MatrixType::Random(size, size);
|
|
ComplexSchur<MatrixType> schurOfA(A);
|
|
VERIFY_IS_EQUAL(schurOfA.info(), Success);
|
|
ComplexMatrixType U = schurOfA.matrixU();
|
|
ComplexMatrixType T = schurOfA.matrixT();
|
|
for(int row = 1; row < size; ++row) {
|
|
for(int col = 0; col < row; ++col) {
|
|
VERIFY(T(row,col) == (typename MatrixType::Scalar)0);
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
|
|
}
|
|
|
|
// Test asserts when not initialized
|
|
ComplexSchur<MatrixType> csUninitialized;
|
|
VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
|
|
VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
|
|
VERIFY_RAISES_ASSERT(csUninitialized.info());
|
|
|
|
// Test whether compute() and constructor returns same result
|
|
MatrixType A = MatrixType::Random(size, size);
|
|
ComplexSchur<MatrixType> cs1;
|
|
cs1.compute(A);
|
|
ComplexSchur<MatrixType> cs2(A);
|
|
VERIFY_IS_EQUAL(cs1.info(), Success);
|
|
VERIFY_IS_EQUAL(cs2.info(), Success);
|
|
VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
|
|
VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
|
|
|
|
// Test computation of only T, not U
|
|
ComplexSchur<MatrixType> csOnlyT(A, false);
|
|
VERIFY_IS_EQUAL(csOnlyT.info(), Success);
|
|
VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
|
|
VERIFY_RAISES_ASSERT(csOnlyT.matrixU());
|
|
|
|
if (size > 1)
|
|
{
|
|
// Test matrix with NaN
|
|
A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
|
ComplexSchur<MatrixType> csNaN(A);
|
|
VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
|
|
}
|
|
}
|
|
|
|
void test_schur_complex()
|
|
{
|
|
CALL_SUBTEST_1(( schur<Matrix4cd>() ));
|
|
CALL_SUBTEST_2(( schur<MatrixXcf>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) ));
|
|
CALL_SUBTEST_3(( schur<Matrix<std::complex<float>, 1, 1> >() ));
|
|
CALL_SUBTEST_4(( schur<Matrix<float, 3, 3, Eigen::RowMajor> >() ));
|
|
|
|
// Test problem size constructors
|
|
CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10));
|
|
}
|