2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-01-06 14:14:46 +08:00
eigen/bench/tensors/tensor_benchmarks_sycl.cc
2017-03-08 14:17:48 +00:00

74 lines
3.2 KiB
C++

#ifdef EIGEN_USE_SYCL
#include <SYCL/sycl.hpp>
#include <iostream>
#include "tensor_benchmarks.h"
#define BM_FuncGPU(FUNC) \
static void BM_##FUNC(int iters, int N) { \
StopBenchmarkTiming(); \
cl::sycl::gpu_selector selector; \
Eigen::QueueInterface queue(selector); \
Eigen::SyclDevice device(&queue); \
BenchmarkSuite<Eigen::SyclDevice, float> suite(device, N); \
suite.FUNC(iters); \
} \
BENCHMARK_RANGE(BM_##FUNC, 10, 5000);
BM_FuncGPU(memcpy);
BM_FuncGPU(typeCasting);
BM_FuncGPU(slicing);
BM_FuncGPU(rowChip);
BM_FuncGPU(colChip);
BM_FuncGPU(shuffling);
BM_FuncGPU(padding);
BM_FuncGPU(striding);
BM_FuncGPU(broadcasting);
BM_FuncGPU(coeffWiseOp);
BM_FuncGPU(algebraicFunc);
BM_FuncGPU(transcendentalFunc);
BM_FuncGPU(rowReduction);
BM_FuncGPU(colReduction);
BM_FuncGPU(fullReduction);
// Contractions
#define BM_FuncWithInputDimsGPU(FUNC, D1, D2, D3) \
static void BM_##FUNC##_##D1##x##D2##x##D3(int iters, int N) { \
StopBenchmarkTiming(); \
cl::sycl::gpu_selector selector; \
Eigen::QueueInterface queue(selector); \
Eigen::SyclDevice device(&queue); \
BenchmarkSuite<Eigen::SyclDevice, float> suite(device, D1, D2, D3); \
suite.FUNC(iters); \
} \
BENCHMARK_RANGE(BM_##FUNC##_##D1##x##D2##x##D3, 10, 5000);
BM_FuncWithInputDimsGPU(contraction, N, N, N);
BM_FuncWithInputDimsGPU(contraction, 64, N, N);
BM_FuncWithInputDimsGPU(contraction, N, 64, N);
BM_FuncWithInputDimsGPU(contraction, N, N, 64);
// Convolutions
#define BM_FuncWithKernelDimsGPU(FUNC, DIM1, DIM2) \
static void BM_##FUNC##_##DIM1##x##DIM2(int iters, int N) { \
StopBenchmarkTiming(); \
cl::sycl::gpu_selector selector; \
Eigen::QueueInterface queue(selector); \
Eigen::SyclDevice device(&queue); \
BenchmarkSuite<Eigen::SyclDevice, float> suite(device, N); \
suite.FUNC(iters, DIM1, DIM2); \
} \
BENCHMARK_RANGE(BM_##FUNC##_##DIM1##x##DIM2, 128, 5000);
BM_FuncWithKernelDimsGPU(convolution, 7, 1);
BM_FuncWithKernelDimsGPU(convolution, 1, 7);
BM_FuncWithKernelDimsGPU(convolution, 7, 4);
BM_FuncWithKernelDimsGPU(convolution, 4, 7);
BM_FuncWithKernelDimsGPU(convolution, 7, 64);
BM_FuncWithKernelDimsGPU(convolution, 64, 7);
#endif