mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
323 lines
9.6 KiB
Fortran
323 lines
9.6 KiB
Fortran
SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
|
* .. Scalar Arguments ..
|
|
COMPLEX ALPHA,BETA
|
|
INTEGER INCX,INCY,KL,KU,LDA,M,N
|
|
CHARACTER TRANS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX A(LDA,*),X(*),Y(*)
|
|
* ..
|
|
*
|
|
* Purpose
|
|
* =======
|
|
*
|
|
* CGBMV performs one of the matrix-vector operations
|
|
*
|
|
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
|
|
*
|
|
* y := alpha*conjg( A' )*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are vectors and A is an
|
|
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
|
|
*
|
|
* Arguments
|
|
* ==========
|
|
*
|
|
* TRANS - CHARACTER*1.
|
|
* On entry, TRANS specifies the operation to be performed as
|
|
* follows:
|
|
*
|
|
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
|
*
|
|
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
|
|
*
|
|
* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
|
|
*
|
|
* Unchanged on exit.
|
|
*
|
|
* M - INTEGER.
|
|
* On entry, M specifies the number of rows of the matrix A.
|
|
* M must be at least zero.
|
|
* Unchanged on exit.
|
|
*
|
|
* N - INTEGER.
|
|
* On entry, N specifies the number of columns of the matrix A.
|
|
* N must be at least zero.
|
|
* Unchanged on exit.
|
|
*
|
|
* KL - INTEGER.
|
|
* On entry, KL specifies the number of sub-diagonals of the
|
|
* matrix A. KL must satisfy 0 .le. KL.
|
|
* Unchanged on exit.
|
|
*
|
|
* KU - INTEGER.
|
|
* On entry, KU specifies the number of super-diagonals of the
|
|
* matrix A. KU must satisfy 0 .le. KU.
|
|
* Unchanged on exit.
|
|
*
|
|
* ALPHA - COMPLEX .
|
|
* On entry, ALPHA specifies the scalar alpha.
|
|
* Unchanged on exit.
|
|
*
|
|
* A - COMPLEX array of DIMENSION ( LDA, n ).
|
|
* Before entry, the leading ( kl + ku + 1 ) by n part of the
|
|
* array A must contain the matrix of coefficients, supplied
|
|
* column by column, with the leading diagonal of the matrix in
|
|
* row ( ku + 1 ) of the array, the first super-diagonal
|
|
* starting at position 2 in row ku, the first sub-diagonal
|
|
* starting at position 1 in row ( ku + 2 ), and so on.
|
|
* Elements in the array A that do not correspond to elements
|
|
* in the band matrix (such as the top left ku by ku triangle)
|
|
* are not referenced.
|
|
* The following program segment will transfer a band matrix
|
|
* from conventional full matrix storage to band storage:
|
|
*
|
|
* DO 20, J = 1, N
|
|
* K = KU + 1 - J
|
|
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
|
|
* A( K + I, J ) = matrix( I, J )
|
|
* 10 CONTINUE
|
|
* 20 CONTINUE
|
|
*
|
|
* Unchanged on exit.
|
|
*
|
|
* LDA - INTEGER.
|
|
* On entry, LDA specifies the first dimension of A as declared
|
|
* in the calling (sub) program. LDA must be at least
|
|
* ( kl + ku + 1 ).
|
|
* Unchanged on exit.
|
|
*
|
|
* X - COMPLEX array of DIMENSION at least
|
|
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
|
* and at least
|
|
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
|
* Before entry, the incremented array X must contain the
|
|
* vector x.
|
|
* Unchanged on exit.
|
|
*
|
|
* INCX - INTEGER.
|
|
* On entry, INCX specifies the increment for the elements of
|
|
* X. INCX must not be zero.
|
|
* Unchanged on exit.
|
|
*
|
|
* BETA - COMPLEX .
|
|
* On entry, BETA specifies the scalar beta. When BETA is
|
|
* supplied as zero then Y need not be set on input.
|
|
* Unchanged on exit.
|
|
*
|
|
* Y - COMPLEX array of DIMENSION at least
|
|
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
|
* and at least
|
|
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
|
* Before entry, the incremented array Y must contain the
|
|
* vector y. On exit, Y is overwritten by the updated vector y.
|
|
*
|
|
*
|
|
* INCY - INTEGER.
|
|
* On entry, INCY specifies the increment for the elements of
|
|
* Y. INCY must not be zero.
|
|
* Unchanged on exit.
|
|
*
|
|
* Further Details
|
|
* ===============
|
|
*
|
|
* Level 2 Blas routine.
|
|
*
|
|
* -- Written on 22-October-1986.
|
|
* Jack Dongarra, Argonne National Lab.
|
|
* Jeremy Du Croz, Nag Central Office.
|
|
* Sven Hammarling, Nag Central Office.
|
|
* Richard Hanson, Sandia National Labs.
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX ONE
|
|
PARAMETER (ONE= (1.0E+0,0.0E+0))
|
|
COMPLEX ZERO
|
|
PARAMETER (ZERO= (0.0E+0,0.0E+0))
|
|
* ..
|
|
* .. Local Scalars ..
|
|
COMPLEX TEMP
|
|
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
|
|
LOGICAL NOCONJ
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC CONJG,MAX,MIN
|
|
* ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
|
+ .NOT.LSAME(TRANS,'C')) THEN
|
|
INFO = 1
|
|
ELSE IF (M.LT.0) THEN
|
|
INFO = 2
|
|
ELSE IF (N.LT.0) THEN
|
|
INFO = 3
|
|
ELSE IF (KL.LT.0) THEN
|
|
INFO = 4
|
|
ELSE IF (KU.LT.0) THEN
|
|
INFO = 5
|
|
ELSE IF (LDA.LT. (KL+KU+1)) THEN
|
|
INFO = 8
|
|
ELSE IF (INCX.EQ.0) THEN
|
|
INFO = 10
|
|
ELSE IF (INCY.EQ.0) THEN
|
|
INFO = 13
|
|
END IF
|
|
IF (INFO.NE.0) THEN
|
|
CALL XERBLA('CGBMV ',INFO)
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
|
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
|
*
|
|
NOCONJ = LSAME(TRANS,'T')
|
|
*
|
|
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
|
* up the start points in X and Y.
|
|
*
|
|
IF (LSAME(TRANS,'N')) THEN
|
|
LENX = N
|
|
LENY = M
|
|
ELSE
|
|
LENX = M
|
|
LENY = N
|
|
END IF
|
|
IF (INCX.GT.0) THEN
|
|
KX = 1
|
|
ELSE
|
|
KX = 1 - (LENX-1)*INCX
|
|
END IF
|
|
IF (INCY.GT.0) THEN
|
|
KY = 1
|
|
ELSE
|
|
KY = 1 - (LENY-1)*INCY
|
|
END IF
|
|
*
|
|
* Start the operations. In this version the elements of A are
|
|
* accessed sequentially with one pass through the band part of A.
|
|
*
|
|
* First form y := beta*y.
|
|
*
|
|
IF (BETA.NE.ONE) THEN
|
|
IF (INCY.EQ.1) THEN
|
|
IF (BETA.EQ.ZERO) THEN
|
|
DO 10 I = 1,LENY
|
|
Y(I) = ZERO
|
|
10 CONTINUE
|
|
ELSE
|
|
DO 20 I = 1,LENY
|
|
Y(I) = BETA*Y(I)
|
|
20 CONTINUE
|
|
END IF
|
|
ELSE
|
|
IY = KY
|
|
IF (BETA.EQ.ZERO) THEN
|
|
DO 30 I = 1,LENY
|
|
Y(IY) = ZERO
|
|
IY = IY + INCY
|
|
30 CONTINUE
|
|
ELSE
|
|
DO 40 I = 1,LENY
|
|
Y(IY) = BETA*Y(IY)
|
|
IY = IY + INCY
|
|
40 CONTINUE
|
|
END IF
|
|
END IF
|
|
END IF
|
|
IF (ALPHA.EQ.ZERO) RETURN
|
|
KUP1 = KU + 1
|
|
IF (LSAME(TRANS,'N')) THEN
|
|
*
|
|
* Form y := alpha*A*x + y.
|
|
*
|
|
JX = KX
|
|
IF (INCY.EQ.1) THEN
|
|
DO 60 J = 1,N
|
|
IF (X(JX).NE.ZERO) THEN
|
|
TEMP = ALPHA*X(JX)
|
|
K = KUP1 - J
|
|
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
|
|
Y(I) = Y(I) + TEMP*A(K+I,J)
|
|
50 CONTINUE
|
|
END IF
|
|
JX = JX + INCX
|
|
60 CONTINUE
|
|
ELSE
|
|
DO 80 J = 1,N
|
|
IF (X(JX).NE.ZERO) THEN
|
|
TEMP = ALPHA*X(JX)
|
|
IY = KY
|
|
K = KUP1 - J
|
|
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
|
|
Y(IY) = Y(IY) + TEMP*A(K+I,J)
|
|
IY = IY + INCY
|
|
70 CONTINUE
|
|
END IF
|
|
JX = JX + INCX
|
|
IF (J.GT.KU) KY = KY + INCY
|
|
80 CONTINUE
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
|
|
*
|
|
JY = KY
|
|
IF (INCX.EQ.1) THEN
|
|
DO 110 J = 1,N
|
|
TEMP = ZERO
|
|
K = KUP1 - J
|
|
IF (NOCONJ) THEN
|
|
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
|
|
TEMP = TEMP + A(K+I,J)*X(I)
|
|
90 CONTINUE
|
|
ELSE
|
|
DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
|
|
TEMP = TEMP + CONJG(A(K+I,J))*X(I)
|
|
100 CONTINUE
|
|
END IF
|
|
Y(JY) = Y(JY) + ALPHA*TEMP
|
|
JY = JY + INCY
|
|
110 CONTINUE
|
|
ELSE
|
|
DO 140 J = 1,N
|
|
TEMP = ZERO
|
|
IX = KX
|
|
K = KUP1 - J
|
|
IF (NOCONJ) THEN
|
|
DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
|
|
TEMP = TEMP + A(K+I,J)*X(IX)
|
|
IX = IX + INCX
|
|
120 CONTINUE
|
|
ELSE
|
|
DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
|
|
TEMP = TEMP + CONJG(A(K+I,J))*X(IX)
|
|
IX = IX + INCX
|
|
130 CONTINUE
|
|
END IF
|
|
Y(JY) = Y(JY) + ALPHA*TEMP
|
|
JY = JY + INCY
|
|
IF (J.GT.KU) KX = KX + INCX
|
|
140 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CGBMV .
|
|
*
|
|
END
|