mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
215 lines
6.9 KiB
Plaintext
215 lines
6.9 KiB
Plaintext
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
// workaround issue between gcc >= 4.7 and cuda 5.5
|
|
#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
|
|
#undef _GLIBCXX_ATOMIC_BUILTINS
|
|
#undef _GLIBCXX_USE_INT128
|
|
#endif
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
|
|
|
#include "main.h"
|
|
#include "gpu_common.h"
|
|
|
|
// Check that dense modules can be properly parsed by nvcc
|
|
#include <Eigen/Dense>
|
|
|
|
// struct Foo{
|
|
// EIGEN_DEVICE_FUNC
|
|
// void operator()(int i, const float* mats, float* vecs) const {
|
|
// using namespace Eigen;
|
|
// // Matrix3f M(data);
|
|
// // Vector3f x(data+9);
|
|
// // Map<Vector3f>(data+9) = M.inverse() * x;
|
|
// Matrix3f M(mats+i/16);
|
|
// Vector3f x(vecs+i*3);
|
|
// // using std::min;
|
|
// // using std::sqrt;
|
|
// Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x();
|
|
// //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
|
|
// }
|
|
// };
|
|
|
|
template<typename T>
|
|
struct coeff_wise {
|
|
EIGEN_DEVICE_FUNC
|
|
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
|
|
{
|
|
using namespace Eigen;
|
|
T x1(in+i);
|
|
T x2(in+i+1);
|
|
T x3(in+i+2);
|
|
Map<T> res(out+i*T::MaxSizeAtCompileTime);
|
|
|
|
res.array() += (in[0] * x1 + x2).array() * x3.array();
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct replicate {
|
|
EIGEN_DEVICE_FUNC
|
|
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
|
|
{
|
|
using namespace Eigen;
|
|
T x1(in+i);
|
|
int step = x1.size() * 4;
|
|
int stride = 3 * step;
|
|
|
|
typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
|
|
MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
|
|
MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
|
|
MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct redux {
|
|
EIGEN_DEVICE_FUNC
|
|
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
|
|
{
|
|
using namespace Eigen;
|
|
int N = 10;
|
|
T x1(in+i);
|
|
out[i*N+0] = x1.minCoeff();
|
|
out[i*N+1] = x1.maxCoeff();
|
|
out[i*N+2] = x1.sum();
|
|
out[i*N+3] = x1.prod();
|
|
out[i*N+4] = x1.matrix().squaredNorm();
|
|
out[i*N+5] = x1.matrix().norm();
|
|
out[i*N+6] = x1.colwise().sum().maxCoeff();
|
|
out[i*N+7] = x1.rowwise().maxCoeff().sum();
|
|
out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
|
|
}
|
|
};
|
|
|
|
template<typename T1, typename T2>
|
|
struct prod_test {
|
|
EIGEN_DEVICE_FUNC
|
|
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
|
|
{
|
|
using namespace Eigen;
|
|
typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
|
|
T1 x1(in+i);
|
|
T2 x2(in+i+1);
|
|
Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
|
|
res += in[i] * x1 * x2;
|
|
}
|
|
};
|
|
|
|
template<typename T1, typename T2>
|
|
struct diagonal {
|
|
EIGEN_DEVICE_FUNC
|
|
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
|
|
{
|
|
using namespace Eigen;
|
|
T1 x1(in+i);
|
|
Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
|
|
res += x1.diagonal();
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct eigenvalues_direct {
|
|
EIGEN_DEVICE_FUNC
|
|
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
|
|
{
|
|
using namespace Eigen;
|
|
typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
|
|
T M(in+i);
|
|
Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
|
|
T A = M*M.adjoint();
|
|
SelfAdjointEigenSolver<T> eig;
|
|
eig.computeDirect(A);
|
|
res = eig.eigenvalues();
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct eigenvalues {
|
|
EIGEN_DEVICE_FUNC
|
|
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
|
|
{
|
|
using namespace Eigen;
|
|
typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
|
|
T M(in+i);
|
|
Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
|
|
T A = M*M.adjoint();
|
|
SelfAdjointEigenSolver<T> eig;
|
|
eig.compute(A);
|
|
res = eig.eigenvalues();
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct matrix_inverse {
|
|
EIGEN_DEVICE_FUNC
|
|
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
|
|
{
|
|
using namespace Eigen;
|
|
T M(in+i);
|
|
Map<T> res(out+i*T::MaxSizeAtCompileTime);
|
|
res = M.inverse();
|
|
}
|
|
};
|
|
|
|
EIGEN_DECLARE_TEST(gpu_basic)
|
|
{
|
|
ei_test_init_gpu();
|
|
|
|
int nthreads = 100;
|
|
Eigen::VectorXf in, out;
|
|
|
|
#if !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__)
|
|
int data_size = nthreads * 512;
|
|
in.setRandom(data_size);
|
|
out.setRandom(data_size);
|
|
#endif
|
|
|
|
CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) );
|
|
CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) );
|
|
|
|
#if !defined(EIGEN_USE_HIP)
|
|
// FIXME
|
|
// These subtests result in a compile failure on the HIP platform
|
|
//
|
|
// eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error:
|
|
// base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type'
|
|
// (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor
|
|
CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) );
|
|
CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) );
|
|
#endif
|
|
|
|
CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) );
|
|
CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) );
|
|
|
|
CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
|
|
CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
|
|
|
|
CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
|
|
CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
|
|
|
|
CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) );
|
|
CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) );
|
|
CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) );
|
|
|
|
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) );
|
|
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) );
|
|
|
|
#if defined(__NVCC__)
|
|
// FIXME
|
|
// These subtests compiles only with nvcc and fail with HIPCC and clang-cuda
|
|
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) );
|
|
typedef Matrix<float,6,6> Matrix6f;
|
|
CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) );
|
|
#endif
|
|
}
|