mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
213 lines
7.3 KiB
C++
213 lines
7.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_GSL_HELPER
|
|
#define EIGEN_GSL_HELPER
|
|
|
|
#include <Eigen/Core>
|
|
|
|
#include <gsl/gsl_blas.h>
|
|
#include <gsl/gsl_multifit.h>
|
|
#include <gsl/gsl_eigen.h>
|
|
#include <gsl/gsl_linalg.h>
|
|
#include <gsl/gsl_complex.h>
|
|
#include <gsl/gsl_complex_math.h>
|
|
#include <gsl/gsl_poly.h>
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> struct GslTraits
|
|
{
|
|
typedef gsl_matrix* Matrix;
|
|
typedef gsl_vector* Vector;
|
|
static Matrix createMatrix(int rows, int cols) { return gsl_matrix_alloc(rows,cols); }
|
|
static Vector createVector(int size) { return gsl_vector_alloc(size); }
|
|
static void free(Matrix& m) { gsl_matrix_free(m); m=0; }
|
|
static void free(Vector& m) { gsl_vector_free(m); m=0; }
|
|
static void prod(const Matrix& m, const Vector& v, Vector& x) { gsl_blas_dgemv(CblasNoTrans,1,m,v,0,x); }
|
|
static void cholesky(Matrix& m) { gsl_linalg_cholesky_decomp(m); }
|
|
static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_cholesky_solve(m,b,x); }
|
|
static void eigen_symm(const Matrix& m, Vector& eval, Matrix& evec)
|
|
{
|
|
gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc(m->size1);
|
|
Matrix a = createMatrix(m->size1, m->size2);
|
|
gsl_matrix_memcpy(a, m);
|
|
gsl_eigen_symmv(a,eval,evec,w);
|
|
gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
|
|
gsl_eigen_symmv_free(w);
|
|
free(a);
|
|
}
|
|
static void eigen_symm_gen(const Matrix& m, const Matrix& _b, Vector& eval, Matrix& evec)
|
|
{
|
|
gsl_eigen_gensymmv_workspace * w = gsl_eigen_gensymmv_alloc(m->size1);
|
|
Matrix a = createMatrix(m->size1, m->size2);
|
|
Matrix b = createMatrix(_b->size1, _b->size2);
|
|
gsl_matrix_memcpy(a, m);
|
|
gsl_matrix_memcpy(b, _b);
|
|
gsl_eigen_gensymmv(a,b,eval,evec,w);
|
|
gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
|
|
gsl_eigen_gensymmv_free(w);
|
|
free(a);
|
|
}
|
|
|
|
template<class EIGEN_VECTOR, class EIGEN_ROOTS>
|
|
static void eigen_poly_solve(const EIGEN_VECTOR& poly, EIGEN_ROOTS& roots )
|
|
{
|
|
const int deg = poly.size()-1;
|
|
double *z = new double[2*deg];
|
|
double *a = new double[poly.size()];
|
|
for( int i=0; i<poly.size(); ++i ){ a[i] = poly[i]; }
|
|
|
|
gsl_poly_complex_workspace * w = gsl_poly_complex_workspace_alloc (poly.size());
|
|
gsl_poly_complex_solve(a, poly.size(), w, z);
|
|
gsl_poly_complex_workspace_free (w);
|
|
for( int i=0; i<deg; ++i )
|
|
{
|
|
roots[i].real() = z[2*i];
|
|
roots[i].imag() = z[2*i+1];
|
|
}
|
|
|
|
delete[] a;
|
|
delete[] z;
|
|
}
|
|
};
|
|
|
|
template<typename Scalar> struct GslTraits<Scalar,true>
|
|
{
|
|
typedef gsl_matrix_complex* Matrix;
|
|
typedef gsl_vector_complex* Vector;
|
|
static Matrix createMatrix(int rows, int cols) { return gsl_matrix_complex_alloc(rows,cols); }
|
|
static Vector createVector(int size) { return gsl_vector_complex_alloc(size); }
|
|
static void free(Matrix& m) { gsl_matrix_complex_free(m); m=0; }
|
|
static void free(Vector& m) { gsl_vector_complex_free(m); m=0; }
|
|
static void cholesky(Matrix& m) { gsl_linalg_complex_cholesky_decomp(m); }
|
|
static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_complex_cholesky_solve(m,b,x); }
|
|
static void prod(const Matrix& m, const Vector& v, Vector& x)
|
|
{ gsl_blas_zgemv(CblasNoTrans,gsl_complex_rect(1,0),m,v,gsl_complex_rect(0,0),x); }
|
|
static void eigen_symm(const Matrix& m, gsl_vector* &eval, Matrix& evec)
|
|
{
|
|
gsl_eigen_hermv_workspace * w = gsl_eigen_hermv_alloc(m->size1);
|
|
Matrix a = createMatrix(m->size1, m->size2);
|
|
gsl_matrix_complex_memcpy(a, m);
|
|
gsl_eigen_hermv(a,eval,evec,w);
|
|
gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
|
|
gsl_eigen_hermv_free(w);
|
|
free(a);
|
|
}
|
|
static void eigen_symm_gen(const Matrix& m, const Matrix& _b, gsl_vector* &eval, Matrix& evec)
|
|
{
|
|
gsl_eigen_genhermv_workspace * w = gsl_eigen_genhermv_alloc(m->size1);
|
|
Matrix a = createMatrix(m->size1, m->size2);
|
|
Matrix b = createMatrix(_b->size1, _b->size2);
|
|
gsl_matrix_complex_memcpy(a, m);
|
|
gsl_matrix_complex_memcpy(b, _b);
|
|
gsl_eigen_genhermv(a,b,eval,evec,w);
|
|
gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
|
|
gsl_eigen_genhermv_free(w);
|
|
free(a);
|
|
}
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
void convert(const MatrixType& m, gsl_matrix* &res)
|
|
{
|
|
// if (res)
|
|
// gsl_matrix_free(res);
|
|
res = gsl_matrix_alloc(m.rows(), m.cols());
|
|
for (int i=0 ; i<m.rows() ; ++i)
|
|
for (int j=0 ; j<m.cols(); ++j)
|
|
gsl_matrix_set(res, i, j, m(i,j));
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void convert(const gsl_matrix* m, MatrixType& res)
|
|
{
|
|
res.resize(int(m->size1), int(m->size2));
|
|
for (int i=0 ; i<res.rows() ; ++i)
|
|
for (int j=0 ; j<res.cols(); ++j)
|
|
res(i,j) = gsl_matrix_get(m,i,j);
|
|
}
|
|
|
|
template<typename VectorType>
|
|
void convert(const VectorType& m, gsl_vector* &res)
|
|
{
|
|
if (res) gsl_vector_free(res);
|
|
res = gsl_vector_alloc(m.size());
|
|
for (int i=0 ; i<m.size() ; ++i)
|
|
gsl_vector_set(res, i, m[i]);
|
|
}
|
|
|
|
template<typename VectorType>
|
|
void convert(const gsl_vector* m, VectorType& res)
|
|
{
|
|
res.resize (m->size);
|
|
for (int i=0 ; i<res.rows() ; ++i)
|
|
res[i] = gsl_vector_get(m, i);
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void convert(const MatrixType& m, gsl_matrix_complex* &res)
|
|
{
|
|
res = gsl_matrix_complex_alloc(m.rows(), m.cols());
|
|
for (int i=0 ; i<m.rows() ; ++i)
|
|
for (int j=0 ; j<m.cols(); ++j)
|
|
{
|
|
gsl_matrix_complex_set(res, i, j,
|
|
gsl_complex_rect(m(i,j).real(), m(i,j).imag()));
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void convert(const gsl_matrix_complex* m, MatrixType& res)
|
|
{
|
|
res.resize(int(m->size1), int(m->size2));
|
|
for (int i=0 ; i<res.rows() ; ++i)
|
|
for (int j=0 ; j<res.cols(); ++j)
|
|
res(i,j) = typename MatrixType::Scalar(
|
|
GSL_REAL(gsl_matrix_complex_get(m,i,j)),
|
|
GSL_IMAG(gsl_matrix_complex_get(m,i,j)));
|
|
}
|
|
|
|
template<typename VectorType>
|
|
void convert(const VectorType& m, gsl_vector_complex* &res)
|
|
{
|
|
res = gsl_vector_complex_alloc(m.size());
|
|
for (int i=0 ; i<m.size() ; ++i)
|
|
gsl_vector_complex_set(res, i, gsl_complex_rect(m[i].real(), m[i].imag()));
|
|
}
|
|
|
|
template<typename VectorType>
|
|
void convert(const gsl_vector_complex* m, VectorType& res)
|
|
{
|
|
res.resize(m->size);
|
|
for (int i=0 ; i<res.rows() ; ++i)
|
|
res[i] = typename VectorType::Scalar(
|
|
GSL_REAL(gsl_vector_complex_get(m, i)),
|
|
GSL_IMAG(gsl_vector_complex_get(m, i)));
|
|
}
|
|
|
|
}
|
|
|
|
#endif // EIGEN_GSL_HELPER
|